
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Research on data control mechanism in the

 honeyfarm environment

Jian Li†, Jing-Feng Xue and Chun Shan,

School of Software, Beijing Institute of Technology, Beijing, 100081, China

E-mail: 13811328115@139.com

There is always the potential of malware or attackers using a honeyfarm to infect or

attack non-honeyfarm systems. Thus, each organization must implement data control of a

compromised honeypot to minimize the risk. We have proposed a data control

mechanism that exploits honeyfarm gateway, intrusion detection system, and reverse

firewall to achieve this goal. We demonstrate that the data control mechanism not only

can effectively identify the outbound traffic with attacks, but enables dynamic

containment of malware inside a honeyfarm.

Keywords: Honeypot; Honeyfarm; Data Control.

1. Introduction

With the constant growth of the Internet, network security issues have become

increasingly serious. With automated techniques attackers can scan specific

network ranges of the Internet searching for vulnerable systems with known

weaknesses. Once these attackers have compromised a machine, they install a so

called zombie on it. This allows an attacker to remotely control this machine and

many compromised machines which can be remotely controlled by an attacker,

is called a botnet. Botnets pose serious threats, they are used as a launching

platform for various types of network attack such as bulk-email, distributed

denial-of-service (DDoS) and identity theft.

The honeypot has emerged as an effective tool to discover and understand

the tactics and motives of attackers. A honeypot is a security resource whose

value lies in being probed, attacked, or compromised. Honeypots have many

unique advantages, including dramatically reducing false positives, working in

encrypted environments, and the ability to capture new behavior. Though

effective, a single honeypot only provide a limited local view of network attacks.

Deploying a large number of distributed honeypots in different network domain

can provide a broader view. Unfortunately, the more honeypots you deploy, the

more resources are required. To address these challenges, Lance Spitzner

822

2nd Annual International Conference on Electronics, Electrical Engineering and Information Science (EEEIS 2016)
Advances in Engineering Research (AER), volume 117

presents honeyfarm[1], a new concept with tremendous potential. It represents

one of the newest methods for large deployments of distributed honeypots.

Instead of deploying large numbers of distributed honeypots, simply deploy

honeypots in a single and consolidated location. This single network of

honeypots becomes a honeyfarm. Once Deployed a redirector to each network

you want monitored, the redirector[2] transports an attacker’s probes or

unauthorized activity to a honeypot within the honeyfarm, without the attacker

ever knowing it. Unfortunately, honeyfarms have a great deal of inherent risk in

them. The risk being that once attackers take over one of the honeypots within

the honeyfarm, they can then use that honeypot to attack other non-honeypot

systems. To minimize the risk, each organization must implement data control

of a compromised honeypot. Data control defines how activity is contained with

the honeynet without an attacker knowing it. The purpose of data control

mechanism in the honeyfarm is to prevent attackers and malware using

honeyfarm to attack or infect other non-honeypot systems. What’s more, with

the data control mechanism we can understand the native behavior of malware.

2. Architecture of Honeyfarm

According to the idea of Potemkin virtual honeyfarm[3], we have presented a

honeyfarm system mainly consists of honeyfarm gateway and virtual honeypot.

Each of the components will be described below.

2.1. Honeyfarm gateway

The honeyfarm gateway supports four distinct functions: it must manage the

containment of inbound and outbound traffic, implement network address

translation, forward DNS requests, and interface with administration component.

Each of the functions will be described below, and the data control will be

discussed in Section 3.

2.1.1. DNS proxy

An attacker may be able to detect a honeypot simply by initiating a HTTP GET

command, and seeing if it is blocked. In order to avoid detecting the honeypot

within a honeyfarm, we must allow outbound DNS requests. The simplest

approach to enabling DNS within a honeyfarm is to adjust the containment

policy to allow honeypots to send out DNS requests directly to domain name

servers on the Internet. However, this will give the potential for malware to

attack domain name servers. To address the risk, the gateway allow outbound

DNS requests to be forwarded to a dedicated DNS server.

823

Advances in Engineering Research (AER), volume 117

2.1.2. Network address translation

A honeypot within a honeyfarm created due to a reflected connection can have

any IP address, which most likely one outside the honeyfarm’s address space. If

a honeypot attempts to initiate a HTTP GET command, response packets should

be routed to the real Internet host, not the honeypot within the honeyfarm. We

address this issue by implementing network address translation (NAT) at the

gateway. When a honeypot created by a reflected connection need to

communicate with Internet hosts, we rewrite the source address to be inside the

honeyfarm’s address space so response packets will reach the gateway.

2.1.3. Administration interface

Finally, the honeyfarm gateway provides an administration interface used to

maintain the white-list according to monitoring requirements, configure packet

modification policy to modify the payload of known attacks, and communicate

with intrusion detection system component.

2.2. Virtual honeypot

A specialized virtual machine monitor (VMM) spawns a new virtual machine

(VM) for each distinct IP address. Once this new VM is ready, it adopts the

packet’s destination address and handles the request. However, a new VM can

incur significant overhead initializing, booting an operating system, and loading

application software. If initialization takes too long any inbound connection

request may time out. What’s more, each VM may consume hundreds of

megabytes of memory to represent machine state. Since the host’s hardware

resources and software resources are limited, creating a large number of VMs

would consume all honeyfarm resources.

To reduce the initialization overhead, each host maintains a memory

snapshot of a pre-initialized operating system and application environment.

When a new VM needs to be created, this snapshot is simply copied, its identity

changed to reflect the appropriate network state (IP address, default gateway,

and DNS server.). Ideally, a compromised VM would persist long enough for

further analysis, logging, or manipulation. To optimize resource, the honeyfarm

gateway would reclaim VMs that no longer receiving inbound traffic.

3. Data Control Mechanism in Honeyfarm

The best way to implement data control is not to rely on a single mechanism.

Instead, implementing data control using several different mechanisms help

protect against a single point of failure. We have proposed a data control

mechanism that exploits honeyfarm gateway, intrusion detection system, and

824

Advances in Engineering Research (AER), volume 117

reverse firewall to achieve this goal. The data control mechanism is shown in

Figure 1.

The honeyfarm gateway implements data control by setting a series of

inbound traffic control policy and outbound traffic control policy. Intrusion

detection system detects all the inbound and outbound traffic, and makes the use

of rules-based network information search mechanism to detect abnormal traffic.

In addition, in order to avoid single point of failure, by setting some appropriate

rules, the reverse firewall filters outbound connections to ensure that the systems

outside the honeyfarm environment will not be destroyed. The following will

discuss the inbound traffic control policy and outbound traffic control policy of

the honeyfarm gateway, the abnormal flow detection of the intrusion detection

system, and the outbound connection filtering of the reverse firewall

respectively.

Fig. 1. Data control mechanism in the honeyfarm.

3.1. Inbound traffic control policy

3.1.1. Packet filtering policy

Honeyfarm is a service-oriented architecture, and it provides services for the

monitored networks. In order to prevent the honeyfarm from being damaged, the

honeyfarm gateway only receive the traffic from the monitored IP addresses and

the traffic responding to the honeypots. For the traffic that does not belong to

both, the honeyfarm gateway would filter it.

825

Advances in Engineering Research (AER), volume 117

3.1.2. Packet modification policy

Honeypot’s value lies in being compromised to observe and study attacks. In

order to learn zero day vulnerabilities and new methods used by attackers, the

honeyfarm gateway can be configured to modify the payload of known attacks

to disable it. Attackers will see their attacks reaching their intended targets, but

not be able to figure out why the attacks are failing. They may try different

means to attack the honeypot, which maximizes the value of the honeypot.

3.1.3. Packet dispatch policy

Packets go through the packet filtering policy and the packet modification policy

are prepared to be delivered to final destination. The honeyfarm gateway

dispatches packets to VMM that will be responsible for creating a VM to

represent the destination IP address of the packet, and the VM handles the

requests as though it were the intended recipient.

3.2. Outbound traffic control policy

3.2.1. Packet forwarding policy

When an attacker breaks into a honeypot, they may initiate connections (ICMP

ping or a simple HTTP GET command) to detect a honeypot. To address this

challenge, the honeyfarm gateway forward normal traffic to the Internet.

3.2.2. Packet encapsulation policy

The source address of the packets forwarded by the redirector called the attack

source, under the assumption that this attack source is a central server or bot-

master. In order to learn the native behavior of malware, the honeyfarm gateway

must response to the attack source. If the honeyfarm gateway forwards the

responding packets to the attack source directly, an attacker may be able to

detect a honeypot simply by checking the source address of the responding

packets. Thus, these packets are encapsulated and forwarded to the redirector by

the honeyfarm gateway, and the redirector forwards them to the attack source.

3.2.3. Packet reflection policy

Once a honeypot is successfully compromised, it may attempt to attack or infect

non-honeypot systems. Thus, a honeyfarm could easily become an accelerator

for a malware. To address this issue, the honeyfarm gateway uses packet

reflection policy. When the IDS identifies an outbound packet cannot be safely

826

Advances in Engineering Research (AER), volume 117

forwarded to the Internet, the honeyfarm gateway can reflect it back into the

honeyfarm which will then adopt the identity of the destination IP address.

3.2.4. Packet dropping policy

In order to hide themselves, the network attackers often break some systems and

make them as bots instead of attacking the target through their own systems.

Attackers need to conduct a wide range of network scanning to implement the

springboard attack. In this case, the compromised honeypot systems will

generate a large number of scanning packets with different IP addresses. If the

packet dropping policy is not set, the honeyfarm gateway will create honeypots

for each scan packet, which will result the depletion of hardware resources in the

honeyfarm. To solve this problem, the honeyfarm gateway maintains a list of

honeypots that are generated directly or indirectly by each source in the

honeyfarm. If the number of generated honeypots exceeds a certain limit, the

subsequent packet will be dropped.

3.3. Abnormal flow detection

Abnormal flow detection is implemented by the Intrusion detection system

(IDS). The IDS inspects all the inbound and outbound traffic.

For inbound traffic, the purpose of IDS is to identify known attacks and

forward them to the honeyfarm gateway. If any packet matches any of the IDS

rules, the packet can be modified by the honeyfarm gateway according to the

packet modification policy. For outbound traffic, the purpose of IDS is to

distinguish traffic with known attacks. The attack traffic would be reflected back

into the honeyfarm according to the packet reflection policy, and the normal

traffic would be forwarded.

3.4. Outbound connection filtering

Outbound connection filtering is implemented by the reverse firewall. The

reverse firewall checks all the packets transmitted from the honeyfarm to the

external network and restricts all packets that do not meet the security policy

requirements.

In order to avoid a single point of failure, the reverse firewall implement the

final layer of data control. By setting the corresponding rules to filter outbound

connections to prevent denial of service attacks, distributed denial of service

attacks and other security threats. In addition, we can set the threshold to limit

the number of outbound connections for further outbound traffic control.

827

Advances in Engineering Research (AER), volume 117

4. Implementation of Data Control Mechanism

The honeyfarm gateway is built on top of the Click modular software router

framework[4]. A router implemented in Click consists of a set of packet

processing modules called elements. Using a special description language called

configuration, elements can be connected together to form a directed graph that

represents how packets flow through the processing modules. Upon the base

Click installation, our implementation adds roughly 8000 lines of custom

element code and nearly 1000 lines for configuration. Intrusion detection system

uses network intrusion detection system Snort[5].The reverse firewall uses the

Linux kernel-based firewall iptables[6].

4.1. Inbound traffic control

The inbound traffic is divided in two parts, one is forwarded by the redirector,

and the other is responding to the honeypots. The control process is shown in

Figure 2.

The honeyfarm gateway maintains a whitelist that records the all the IP

addresses of the monitored network, and a non-attack address list that records

the normal traffic destination addresses. In order to avoid detecting and

damaging the honeyfarm gateway, it only receive traffic from the whitelist and

the non-attack address list.

For the traffic that is forwarded by the redirector, the honeyfarm gateway

decapsulates the packet and forwards to the IDS. Once identified known attacks,

the honeyfarm gateway decides whether to modify or forward it. Finally, virtual

machine monitor will create a VM to represent the destination IP address of the

packet, and subsequent packets to the same IP address can then be delivered

directly to that VM. For the traffic that is responding to the honeypots, the

honeyfarm gateway uses destination address network address translation and

dispatches it to the corresponding honeypot.

828

Advances in Engineering Research (AER), volume 117

Fig. 2. Inbound traffic control process.

829

Advances in Engineering Research (AER), volume 117

4.2. Outbound traffic control

The outbound traffic is divided in two parts, one is the responding traffic to the

attack source, and the other is the traffic initiated by the honeypots. The control

process is shown in Figure 3.

Fig. 3. Outbound traffic control process.

The honeyfarm gateway maintains a flow table that records the attack

sources, and a history table that records the state of instantiated honeypots.

For the traffic responds to the attack source, the honeyfarm gateway

encapsulates the packet and forwards to the corresponding redirector. After that,

the redirector decapsulates it and forwards to the attack source. For the traffic

initiated by the honeypots will first be detected by Snort to distinguish abnormal

traffic. The abnormal traffic that cannot be safely forwarded to the Internet

830

Advances in Engineering Research (AER), volume 117

would be reflected back by the honeyfarm gateway. Packets with attacks track

the IP address of honeypots via the history table so that an outbound packet is

subject to the packet reflection policy. However, due to the limited hardware

resources of the honeyfarm, the honeyfarm gateway will drop the subsequent

packets when the number of honeypots exceeds a certain value. Finally, the

normal traffic will be forwarded to the reverse firewall for further filtering.

5. Evaluation

In this section, we evaluate the validity of our data control mechanism in the

honeyfarm.

5.1. Experimental environment

Our experimental test environment uses a Dell PowerEdge R330 server with a

3GHz Xeon processor and 8GB of physical memory. The honeyfarm gateway is

based on the Click 2.0.1 version running in kernel mode. VMM is based on a

version of Xen 3.0 and we use Debian GNU/Linux 5.0 as Xen guest operating

system for creating the honeypots. Snort and iptables are deployed in the

RedHat Liunx 9 respectively.

We have monitored five public IP addresses, five honeypots are installed in

the honeyfarm to monitor those IP addresses. The operating system and service

configuration of the honeypots are shown in Table 1. Monitoring began in May

2016 and lasted for five months.

Table 1. Honeypots information and service configuration.

Honeypot information Honeypot service configuration

Unpatched Ubuntu 10.04 FTP, SSH, Telnet, SMTP, HTTP, RPC

Unpatched Windows XP SP3 MSRPC, NetBIOS-SSN, Microsoft-DS

Unpatched Windows Server 2003 FTP, HTTP, RPC, NetBIOS-SSN

Patched Windows 7 MSRPC

Patched Windows 8 MSRPC

5.2. Experiment analysis

5.2.1. Comparative analysis

Due to the different types of operating systems, and the variety of open services,

the Ubuntu 10.04, the Windows XP SP3 and the Windows Server 2003 which

provide more services always attract more attacks. As shown in Figure 4, we

record the number of attacks in 30 days without the packet modification policy

in the honeyfarm gateway. After configuring the packet modification policy, we

record the number of attacks in the next 30 days .The number of attacks on each

831

Advances in Engineering Research (AER), volume 117

honeypot is less than before, indicating that the packet modification policy can

effectively modify the attack signatures in the inbound traffic.

Fig. 4. The number of captured attacks.

An attacker will attempt to use a honeypot as a springboard to attack other

product systems when he has compromised it. The most common form of attack

is to use the compromised honeypots to initiate a network scan. As shown in

Figure 5, we stopped the intrusion detection system between July 8 and August

7. After deploying the intrusion detection system in August 8, the number of

honeypots in the honeyfarm is increased markedly, indicating that the packet

reflection policy can reflect the abnormal traffic identified by the intrusion

detection system back to the honeyfarm.

Fig. 5. The number of honeypots.

832

Advances in Engineering Research (AER), volume 117

5.2.2. Worm analysis

During the last 5 months of monitoring, our honeypots captured Flame, Morto,

Blaster and some other worms, we use the honeyfarm to analysis the

propagation behavior of those worms. Morto spreads the fastest, takes about 7

seconds to infect the next honeypot, while Flame and Blaster spreads relatively

slowly, infecting the next honeypot takes about 30 seconds. Morto uses the

remote desktop protocol (Remote Desktop Protocol, RDP) to obtain the target

remote desktop access, because the RDP password of honeypots is empty, so

Morto spreads fast. Blaster spreads through Remote Procedure Call (RPC)

vulnerabilities, which are slow to propagate due to the length of the vulnerability

scanning and penetration process.

By configuring the honeyfarm gateway, one attack source can generate up

to 128 honeypots. Thus worms have freedom to infect other honeypots in the

honeyfarm. Figure 6 shows the worm propagation behavior, we found that the

propagation time of all worms is exponential. Through statistical analysis, Morto

first infected 128 honeypots, it takes about 50 seconds.

Fig. 6. Worm propagation behavior.

5.2.3. Delay analysis

Deployment of the intrusion detection system and the reverse firewall will

inevitably lead to network latency. We use a honeypot to construct a TCP source,

while using an Internet host to construct a TCP receiver, and the receiver has

two hops from the source. The TCP source sends a 4.2GB video file to the TCP

receiver repeatedly. We increase the TCP packet size from 400 bytes to 1400

833

Advances in Engineering Research (AER), volume 117

bytes and measure the end-to-end delay in the TCP source for 10 times. The

average result is shown in Figure 7.

As the honeyfarm gateway will pass packets to the intrusion detection

system and the reverse firewall for processing, both of them will lead to the

delay. Intrusion detection system will match packets with attack signatures,

while the reverse firewall simply compares the header of packet with its

configuration rules. So the intrusion detection system produce more delay than

the reverse firewall. As we use a gigabyte link to connect the TCP source and

the TCP receiver, so there is no significant difference in the transmission time

between 400 bytes and 1400 bytes. In addition, the TCP receiver is only two

hops away from the TCP source, as a result, the end-to-end delay variation of

the different size is not significant.

Fig. 7. End-to-end delay.

6. Conclusion

In this paper, we have presented a data control mechanism that exploits the

honeyfarm gateway, intrusion detection system, and reverse firewall to

minimize the risk by a compromised honeypot within the honeyfarm. We

evaluate our mechanism implementation, and argue that it is effective to identify

the outbound traffic with attacks, which dramatically reduces the risk of a

known outbound attack being successful. What’s more, by implementing our

mechanism, we are able to safely study and analyze the behavior of malware

without the possibility of it leaking out onto the Internet.

834

Advances in Engineering Research (AER), volume 117

Acknowledgments

This work was supported by the Key Project of National Defense Basic

Research Program of China under Grant No. JCKY2016602B001 and the

Equipment Advance Research Foundation of China under Grant No.

9140A15070415BQ01213.

References

1. Lance Spitzner. Honeypot Farms. 2003.

http://www.symantec.com/connect/articles/honeypot-farms

2. Xuxian Jiang, Dongyan Xu. Collapsar: A VM-Based Architecture for

Network Attack Detention Center. In Proceedings of the USENIX Security

Symposium, August 2004.

3. Michael Vrable, Justin Ma, Jay Chen, et al. Scalability, Fidelity, and

Containment in the Potemkin Virtual Honeyfarm. In Proceedings of the

20th ACM Symposium on Operating System Principles (SOSP), October

2005.

4. Eddie Kohler, Robert Morris, BenJie Chen, John Jannotti, M. Frans

Kaashoek. The Click Modular Router. ACM Transactions on Computer

Systems (TOCS), August 2000.

5. Snort. https://www.snort.org/

6. IPTables. https://www.frozentux.net/iptables-tutorial/iptables-tutorial.html

7. Christian Kreibich, Nicholas Weaver, Chris Kanich, et al. GQ: Practical

Containment for Measuring Modern Malware Systems. In Proceedings of

the ACM SIGCOMM on Internet Measurement Conference, October 2011.

8. Pragya Jain, Anjali Sardana. Defending Against Internet Worms Using

Honeyfarm. In Proceedings of the CUBE International Technology

Conference, September 2012.

9. Sanjeev Kumar, Paramdeep Singh, Rakesh Sehgal, et al. Distributed

Honeynet System Using Gen III Virtual Honeynet. International Journal of

Computer Theory and Engineering, 2012.

10. Zhenxin Zhan, Maochao Xu, Shouhuai Xu. Characterizing Honeypot-

Captured Cyber Attacks: Statistical Framework and Case Study. IEEE

Transactions on Information Forensics and Security, 2013.

11. I.S. Kim, M.H. Kim. Agent-based honeynet framework for protecting

servers in campus networks. IET Information Security, 2012.

835

Advances in Engineering Research (AER), volume 117

