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Along with the development of Machine Learning, statistic and Artificial Intelligence, 

people are exposed to myriad of big data. Meanwhile, accurate data analysis is difficult. 

Echo state network (ESN) algorithms are widely researched and applied in many fields. 

Owing to their potential for exact prediction and simple training process, scientists pay 

more attention to the research of ESN. In this paper, the representative research is carried 

out to sum up the research achievements on ESN, and the future development direction is 

discussed by pointing out the key technical challenges and we suggest several strategies 

for tackling the challenges.  
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1.  Introduction  

As the Internet becomes our most important communications infrastructure, 

service providers try to further improve their functionality, including security, 

reliability, privacy, and multiple service functionalities. The future Internet will 

embody a large number of objects that, through standard communication 

protocols and unique addressing schemes, provide information and services to 

the final users [1]. A large amount of data is generated in this process, and the 

variety and complexity of the data makes it difficult to handle. Humans are 

exposed to myriad of sensory data all the time and can capture their important 

aspects in a way that allows them to be used in the future [2].  

Prediction is employed to interpret and estimate the future development 

trend of things, that is, reveal the inherent trends or laws of development of 

things and point out the future development of the approaches and results 

according to the past and present development of things. Prediction uses 

850

2nd Annual International Conference on Electronics, Electrical Engineering and Information Science (EEEIS 2016)
Advances in Engineering Research (AER), volume 117



scientific methods of analysis and comprehensive information of all aspects. An 

observed sequence often conveys a meaning, whereby it is difficult to decipher 

independent fragments of this sequence in isolation. Meaning is often inferred 

from events or observations that are received in adjacent time [3]. Therefore, 

modeling the temporal component of the observations plays a critical role in 

effective information representation. The prediction model is different for 

different time series. The initial time series forecasting method is a simple 

extrapolation of global fit in the known time domain; it is suitable for linear 

systems, and the forecast accuracy is poor. 

For decades, it has been one of the key challenges in artificial intelligence 

research to imitate the effectiveness and robustness of the human brain. Recent 

neuroscience findings provide insights into the design of information systems by 

simulating the representation of information in animal brains. This discovery 

motivated the emergence of the artificial neural network models composing of 

many nodes and connections. Through the above ideas, scientists have proposed 

several artificial neural network models by imitating the structure of the human 

brain. The topology of such systems is either regular or random. However, the 

real neural networks are actually neither entirely regular nor totally random. 

Neural networks can be viewed as a general representation of dynamic systems 

[4]. Its internal structure can be seen as a black box especially for highly 

nonlinear system. Feedforward neural networks such as the Multilayer 

Perceptrons (MLPs) [5], Radial Basis Functions (RBFs) have got great success 

in the nonlinear system identification. Among the possible model, Recurrent 

Neural Network (RNN) is widely used in direct or indirect controller design. 

RNN is better than the feedforward neural network in terms of its dynamic 

memory and time embedding capabilities in dynamic system modeling. 

However, it is difficult to realize due to the complexity of the training in a short 

time.  We observe that the time series will need to operate in an extremely 

complex context. It is unlikely to guarantee the robustness of the algorithm in 

the simple network environment. 

Despite these constraints, in the era of big data, prediction technology is 

critical for scientific research, which compels researchers to continually seek 

ways to optimize prediction algorithm or otherwise improve their performance. 

For these reasons, Echo State Networks (ESNS) have been greatly developed 

due to their simple topology and superior prediction performance. 

In this article, we carry out a summary on the present situation of ESN. 

Section II briefly introduces the traditional ESN structure and subsequently 

follows by a detailed overview of some representative improved ESN 

architectures in Section III. Section IV contains a brief note about the impact on 

application and development of ESN. The conclusion in Section V provides a 
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perspective of the potential impact of ESN as well as key questions that remain 

to be answered. 

2. Echo State Networks 

2.1.  Introduction of ESN 

Echo State Network (ESN) is a novel design of RNNs, providing an architecture 

and supervised learning principle, which is first proposed by Jaeger and Haas [6] 

from German Jacobs University. It is a type of three-layered recurrent network 

with a sparse and random hidden layer that is not trained. The networks possess 

the echo state property, that, if given a long enough sequence, the network will 

always eventually reach the same state, regardless of the initial state. In other 

words, its internal state echoes the input sequence [7]. The main idea of ESN is 

to drive a random, large, fixed dynamic pool with the input sequence. The 

internal weights of the reservoir are not changed during training process; only 

the reservoir-to-output connections are trained. Meanwhile, to ensure the echo 

state characteristics, the dynamic spectral radius is less than 1. The general 

structure of ESN is shown in Fig. 1. 

 
Figure 1.  The skeleton frame of ESN. 

2.2. Structure and operation mechanism of ESN 

In this paper, a discrete-time neural network with M input units, N internal 

network units, and L output units (Fig. 2) is used. The input units, internal units 

and output units at time step n are denoted as 
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respectively. The state equations of ESN are as follows: 

( ) ( ( ) ( -1) ( -1))in backx n f W u n Wx n W y n   
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where ),...,,( 21 Nfffff  is the internal units output functions. inW and 

backW represent input weight matrix and output feedback weight matrix, 

respectively.W is state matrix of  reservoir and outW  represents the matrix of 

the dynamic reservoir to the output layer.
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Figure 2.  The basic structure of ESN. 

 

During the training progress of the network, the weight matrix of the 

reservoir network is randomly generated and it will not change, only the output 

weight matrix outW
 
is required to be trained [8] so that the network can achieve 

convergence. Here, we compute the normalized root minimized mean square 

error (NRMSE) as follows to represent the training error 
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                           (6) 

where )(nd  is the true value of the output sequence, )(ny  is the training 

output sequence, ||||  denotes the Euclidean norm, andmeans the empirical 

853

Advances in Engineering Research (AER), volume 117



mean. 

The performance of ESN has a close relationship with the dynamic features. 

Moreover, these dynamic features depend on the values of the ESNs’ global 

parameters, such as the spectral radius, the number of input units, the internal 

excitation functions, the reservoir size and sparsity. By the definition of echo 

state property, we know that an ESN state is a function of finite history of inputs 

presented to the network-the state is the echo of the input history. In practice, 

when the random and sparse internal weight matrix W of ESN is scaled that its 

spectral radius )(W is smaller than 1, the echo state property is obtained. In 

the past few years, although this is used widely in reservoir definition, this 

condition is neither necessary nor sufficient to ensure the echo state property. In 

addition, the short-term memory (STM) [9] is an effective way to understand the 

properties of the ESNs. 

The construction of ESN illustrated as Fig. 3 is simple, as well as the 

training algorithm, so the training process can be completed quickly. However, 

the large scale of internal neurons in ESN lead to an enormous number of 

training samples of the entire network, making the training progress difficult. 

The prediction stage is full of uncertain factors. 
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Figure 3.  Flow chart of constructing an ESN. 

3. Recently Proposed ESN Architectuees and Performance Analysis 

3.1. Analysis and improvement of ESN 

Aimed at the problems mentioned in Section II. B., most of the solutions have 

been preliminary designed. 

Because the performance of ESN has a close relationship with the dynamic 

features which depend on the values of the ESNs global parameters. A number 
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of improved ESN structure algorithms have been developed over the years. 

3.1.1. Analysis of the reservoir 

Up to now, how to use as little as possible neurons to constitute a reserve pool 

with as few as possible connections, so that it can generate a more complex and 

diverse state space has been a focus of ESN research. 

The representative work mainly includes creating the reservoir in a way 

similar to the “growth” of the biological neural structure. One example of the 

idea is in [10]. The main line of this paper is to use simple network topology and 

simplify levels to establish a simple mathematical model, which bears excellent 

practical application ability. Hence, the name is called minimum complexity 

echo state network. 

A further step ahead of this idea is the combination of ESN and complex 

networks. Using the small world and the non-scale dynamic pool extension, the 

experimental results show that this ESN has better forecasting precision. The 

best solution is to define a robust dynamic pool. A similar approach is proposed 

in literature [11], which aims at employing lateral inhibition mechanism (LIM) 

in a DESN dynamic pool, obtaining mixed DESN (DMESN) that enhances the 

prediction accuracy, and at the same time also improves the robustness of the 

algorithm. 

Besides, because sigmoid function is difficult to achieve in hardware, 

random bit sequence neurons can be used instead to build the network. 

Lukoˇseviˇcius M. et al. [12] injected leaky integrator neurons into reservoir, 

putting forward an alternative solution. Another interesting example is that 

researchers improved the structure of echo state network with wavelet functions 

injected, which improves the prediction performance of the ESN. Very similar 

to this approach is the one in literature [13], in which Wang Se realized the 

transformation of the original ESN to a sigmoid hybrid wavelet ESN and 

enlarged the ESN memory space. At the same time, they added some adjusting 

wavelet neurons to retain desirable nonlinear characteristics. Experimental 

results show that SWHESN has a more powerful development cycle, a more 

stable operation, and less computation. SWHESN predicts 46% higher than the 

ESN without typical bias, while running time is just 30% of ESN. 

An interesting example of attempts to go well beyond the current vision of 

the state-of-the-art is introduced in [14]. 

Fan and Han proposed a new ESN structure, which consists of a circulating 

pool with fixed feedback connections. They presented an on-line designed ESN 

model based on the particle swarm algorithm in their paper, which can be 

applied to the recognition of identified systems. The particle swarm optimization 

(PSO) exports the weight of the ESN by the online training, not by calculation. 
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This greatly improves the accuracy of the modeling and avoids the reciprocal 

operation, so its application is greatly expanded. 

Scardapane et al. [15] put forward an effective algorithm which removes 

internal redundancy of the reservoir during the training process. The algorithm is 

based on the correlations of node states. Therefore, it depends only on the input 

signal. Rachez and Hagiwara proposed a new point of view by extending the 

traditional ESN architecture in [16], where examples of this new attitude can be 

found. The number of units required to achieve similar performance in semantic 

modeling is much larger than that of traditional RNNs. They propose a new 

architecture to extend the traditional ESN with a pre-regression feature layer and 

nonlinear output. By using the gradient descent with less computational 

complexity and automatic capturing the similarity between the statements, the 

structure can learn the features in a supervised way. They modify the dynamics 

of the network in a way that allowed it to be significantly better than a single 

ESN. The study of nonlinear output makes the whole network similar to a 

feedforward network with memory layer.   

As detailed in literature [17], deterministic structured dynamic pool 

structure with jump period has good generalization performance. The dynamic 

pool weight learning of the structure is the linear output weight of the hybrid 

optimization strategy, and the dynamic pool weight training consists of 

nonlinear optimization techniques [18]. 

3.1.2. Stability and generalization ability 

In reality, some modeling sequences have chaotic characteristics. Rohitash C. et 

al. [19] employ cooperative coevolution to train neural networks for solving 

chaotic time series problems. The idea of cooperative coevolution is to 

decompose a problem into subcomponents and employ evolutionary algorithms 

for solving them. 

In addition, Limin Z. et al. [20] introduce L-curve method into ESN to 

eliminate the effect of ill-pose. They use Ridge regression(R-R), which contain a 

parameter that can be determined by the Bayesian posterior probability 

maximization method or the Bootstrap resampling method, instead of the 

original linear regression. 

A delay and sum structure was introduced in [21], where a trainable delay is 

introduced on the connection of the output neurons. In addition, literature [22] 

use a linear associative memory readout called Minimum Average Correlation 

Energy (MACE) filter as a novel readout of ESNs for detecting neural action 

potentials [22].  

Under the comprehensive consideration of stability and generalization as 

well as the type of neuron function to simplify the model and improve 
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performance at the same time, H. Y. Cui et al [23] proposed a novel architecture 

called WMCESN with wavelet neurons injected into the reservoir to replace the 

original sigmoid neurons on the basis of a Simple-Ring Echo State Network [24]. 

By using different wavelet functions on different datasets, it is demonstrated that 

the WMCESN model largely improves the prediction performance only with 

little time cost radius range and has more stable prediction ability. Moreover, the 

model enriches the types of memory function in dynamic pool, and improves the 

memory ability of dynamic pool. 

3.2. Preliminary Summary 

The evolution of prediction algorithm in terms of neural network technology has 

created a heterogeneous landscape. Table I summarizes some mainstream 

algorithms used in prediction. 

TABLE I.  NEURAL NETWORK USED FOR PREDICTION 

Researcher 
Time Data Set Method 

A.S. Lapedes  
1987 

Logistic model 
MLP 

A.S. Weigend  
1990 

Sunspot 
RBF 

T. Jerome  1994 
Electronic load 

RNN 

H. Jaeger [7] 2004 Mackey-Glass ESN 

Y. Gao  2005 Mackey-Glass and gas furnace 

data 

FNN 

S. Aydogan  2007  Mackey-Glass MFLNN 

Z.W. Shi and M. Han  2007 
Chaos and  the Yellow River 

runoff 

SVESM 

G. Daniel  2008 
IBM stock index, sunspot, oil 

price 

FRNN 

A. Nouri  2009 
Robot trajectory 

HBRM 

Y. Peng  2011 
Mobile communication traffic 

FESN 

A. Rachez  2012 words in the vocabulary ESN 

L.M. Zhang  2013 
Blast furnace gas quantity 

LC-ESN 

M. Han  2014 Lorenz System and gas 

furnace data 

ESN-SCKF 

M. Han  2015 H énon Map and Lorenz 

System 

FSDESN 

4. ESN Applications 

In view of the fact that ESN is simple modeling and has good performance. 

There have been several examples of ESN in a variety of application domains. 

In addition to the time series prediction [6, 25], there are applications in image 

edge detection [26], nonlinear control [27] and so on. 
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5. The Road Ahead 

At present, artificial intelligence and deep learning based on neural network are 

still an important part of future development. Therefore, it is very important to 

improve and mature neural network. However, there remains a great deal of 

work to be done in improving the learning process, where current focus is on 

optimization of reservoir. Because the core question is that dynamic reservoir, 

acting like a black-box with hundreds of neurons inter-connected or self-

connected, is the most important part of ESNs. In addition, further inspiration 

and techniques may be found from the optimization of the readout network and 

the adjustment of neurons. In the scientific area there have been, and still are, 

challenges about ESN design and implementation.  

In summary, the biggest hotspot is concentrated on further theoretical 

exploration and optimization of network. To study more related theory to design 

a more reliable and compact network so as to effectively solve practical 

problems, there is still a lot of work remains to be done. 

6. Conclusions 

Research on ESN has produced creative and novel approaches, but there are still 

challenges exist. In this paper, we provided a critical but constructive analysis of 

the field of ESN, including its representative models, which illustrates the 

achievements in this field as well as obstacles to its future progress. The main 

challenge is to improve robustness, efficiency, and accuracy of the enabling 

prediction algorithms of ESN. We outlined both research and application 

directions that could improve the capabilities and effectiveness of prediction 

systems. 

As a field of development in full swing, how to improve algorithm theory, 

especially the in-depth research of connotation behind the reservoir, and how the 

advantages of ESN are fully reflected to explore more suitable application of 

ESN in practice, all of these, will be a direction that is worth research attention 

in the field of neural network. 
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