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By adding special conditions, Jean Berstel in 2012 proposed some new codes, for 

example: -F prefix codes, -F maximal prefix codes, -F maximal codes etc.. In 

this paper, we discuss the properties of -F completeness, -F denseness of those 

codes. At first, we present some sufficient and necessary conditions for -F maximal 

prefix codes. Then, we show if -F dense and -F thin sets are closed under the 

operations of union and the production of two languages. 
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1. Introduction 

Various kinds of algebraic codes such as prefix codes, comma-free codes, codes with 

finite deciphering delay etc. are playing very important role in many fields of science, 

for example in computer science, biology, and mathematics. These codes with 

specific algebraic properties have been motivated and defined for different purposes 

in theory and applications. The study of prefix codes has researched saturation point, 

because many scholars from different angles and different aspects to start studying 

special prefix codes, for example, infix code, outfix code, maximal prefix code and 

so on. In [2], -F prefix code, and -F maximal prefix code are given. Since they 

are new codes, in this paper, we are interested in investigating the algebraic 

properties of -F prefix code and -F maximal prefix code. 

In section three, we will show -F maximal prefix codes through -F
completeness and the -F denseness. Then we construct some -F dense sets 

and -F thin sets. 

2.  Preliminaries 

At first, we introduce some basic definitions which will be used later. Let A   

be a finite set of symbols, which is called an alphabet. An element Aa  is 

called a letter. Any finite sequence of letters in A  is called a word. We often 

denote a word by 1 2 nx a a a  where Aai   for any .,2,1 ni   Let 
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A  be the set of all words. We can equip 
A  with an associative operation 

called the concatenation of two sequences. If 1 2 nw a a a  and 

1 2 mv bb b  are two words, then the product of them
 

is the word 

1 2 1 2 .n mz wv a a a bb b   The empty sequence is called the empty word, 

and denoted by 1. It is the word containing no any letter and it is the neutral 

element for the concatenation. So the set 
*A  is a free monoid generated by A . 

Let 1 2 nx a a a , where Aai   for ni 2,1  be a word. The number 

of letters occur in x  is called the length of the word x , which is denoted by 

x . We let 01  . Then x n  for the former word 1 2 .nx a a a  

For any , ,u v w A , u  is called a prefix of v  if v uxw  for some 

 Ax , which is denoted by 
pu v , and w  is called a suffix of v , 

denoted by sw v  Let 1\  AA . A nonempty set 
 AX  or the set 

{1}  is called a language. A language X  is called a prefix code (or a suffix 

code) if  .A AX or A X A    

Let X  be a set of some words or let X A . We call a word x  is a 

prefix (or suffix) of X  if x  is a prefix (or suffix) of some word in X . The 

set X  is called a prefix-closed (or suffix-closed) set if the prefixes (or suffixes) 

of all its words are in X . The set X  is called a factorial set if the factors of 

all its words are in X . The set X  is called a recurrent set if X  is a 

factorial set and for all 
,u w X

, there exists a word v X  such that 

uvw X . Let x  be a word, we call the right (or left) order of x  with 

respect to the set X  is the number of letters such that xa X  

 or ax X
. The set X  is called a right essential set if X  is a 

prefix-closed set and every x X  has right order at least 1. Then we know if 

X  is a right essential set, then for any x X  and any integer 1n , then 

there exists a word v  of length n  such that xv X . The set X  is called 

a left essential set if X  is a suffix-closed set and for all x X , x  has left 

order at least 1. 

Let F A  and X F . The set X  is called right dense in F , or 

simply right F  dense, if for every word in u F , u  is a prefix of X . 

The set X  is called right complete in F , or simply right F  complete, if 
*X  is right dense in F . The set X  is called thin in F , or simply -F thin, 

if there exists a word u F  such that u  is not factorial of X . Let 
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P F  be a prefix code. The prefix code P  is called maximal in F , or 

simply F maximal, if there exist a prefix code Y F , then Y P . 

The notions mentioned above and other notions which did not mentioned 

here can find in [1,2,16,18]. In the following, we cite some results proved in 

[1,2]. 

Lemma 2.1.[2]  Let 
*F A  be a set and X F  be a prefix code. 

Then the following statements are equivalent. 

(i) For every word in u F , there exists a word in w X  such that u  

is a prefix-comparable with w ; 

(ii) The prefix code X  is -F maximal. 

Lemma 2.2.[2] Let 
*F A  be a factorial set and FX   be a 

nonempty set. Then the following statements are equivalent. 

(i) For every word in u F , there exists a word in w X  such that u  

is a prefix-comparable with w ; 

(ii) 
XA  is right -F dense; 

(iii) X  is right -F complete. 

Lemma 2.3.[2] Let 
*F A be a recurrent set and X F  be -F thin. 

Then the following statements are equivalent. 

(i) X  is an -F maximal prefix and suffix (or simply bifix code) code; 

(ii) X  is a left -F complete prefix code; 

(ii') X  is a right -F complete suffix code; 

(iii) X  is an -F maximal prefix code and an F maximal suffix code. 

Lemma 2.4.[1] A maximal code is complete. 

Lemma 2.5.[1] Let w A  be a word and X A  be a maximal code. 

Then X wA X    . 

Lemma 2.6.[1] Let M  be a monoid and 
, ,P Q R M

. If 
QP

 is 

thin, then P  and 
Q

 are all thin. If R  is dense, and P  is thin, then 

PR \  is dense. 

Lemma 2.7.[1]  A thin and complete code is maximal. 

Lemma 2.8.[1] Let X A  be a code. If X  is complete, then X  is 

dense or maximal. 

Lemma 2.9.[1] If X , Y  are prefix codes, then XY  is a prefix code. It 

is also hold for maximal prefix code. 

Lemma 2.10.[1] Let X A . If 
 YAYX \ is a prefix code, then 
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 YAXA . 

3. -F Codes 

Proposition 3.1. Let 
*F A  and X F  be a code. If the following 

conditions hold: 

(i) For every word in u F , there exists a word in x X  such that u  

is a prefix-comparable with x ; 

(ii) 
XA  is right -F dense; 

(iii) X  is an -F maximal prefix code; 

then we have the following results： 

 (i) and (ii) are equivalent; 

(2) If X  is a prefix code, then (i), (ii) and (iii) are equivalent. 

Proof. (1) (i)  (ii) Since u F  such that u  can be 

prefix-comparable with some word Xx . So there exist 
Awv,

 such 

that 
 XAxwuv . Then u  is a prefix of 

XA . Therefore, by the 

definition of right -F dense, we know  
XA  is right -F dense. 

(ii)   (i) Since 
XA  is right -F dense, then for every word Fu , 

we have u  is a prefix of 
XA . So there exist 

Awv,
 and Xx  such 

that xwuv  . Thus u  can be prefix-comparable with the word Xx . 

That is to say, every word in F  is prefix-comparable with some word in X . 

(2) If X  is a prefix code, by lemma 2.1, we know (i) and (iii) are 

equivalent. So the condition (i), (ii) and (iii) are equivalent. 

Theorem 3.2. Let 
 AF  be a suffix-closed set, and FX   be a code. 

Then the following statements are equivalent. 

(i) 
XA  is a right -F dense set; 

(ii) X  is a right -F complete set. 

Proof. (i)   (ii) For any word Fu , we want to prove that u  is a 

prefix of 
X . Since 

XA  is right -F dense, by lemma 3.1, we have every 

word in F  is prefix-comparable with a word in X . Then there exist w , 
 Aw and Xx such that wxuw  . If u  is a prefix of x , then u  is 

a prefix of 
X . Otherwise, x  is a prefix of u . So there exists 

 Au  such 

that uxu  . Since Fu  and F  is a suffix-closed set, then Fu  , 
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because 1x . Then 
uu 

. Similarly, we have 
XA  is right -F dense 

by proposition 4.1. So every word in F  is prefix-comparable with a word in 

X . Therefore, there exist 
 Aww 11, , and 

Xx 1  such that 




111 wxwu
. If u is a prefix of 1x

, then u is a prefix of 
X . Otherwise, 

1x
 is a prefix of u . Then there exists 

 Au  such that 
uxu  1 . Since 

F  is suffix-closed, then 
 Au . Since X  has nonempty word, then 

1x . Thus 
uu 

. By induction, we know the word u  is a prefix of 
X . So u  is a prefix of 

X . Hence X  is right F complete. 

(ii)  (i) Since X  is right F-complete, then for any word Fu , we 

have u  is a prefix of 
X , because 

  XAX . Then u  is a prefix of 
XA . By the definition of right -F dense, we know 

XA  is right -F dense. 

Proposition 3.3. Let F A  be a set and X F  be a code. Then the 

following statements are equivalent. 

(i) X  is an -F maximal prefix code; 

(ii) 
XA  is right -F dense. 

Proof.(i) (ii) Since X  is a -F maximal prefix code, then for any word 

XFu \ , u  is prefix-comparable with some prefix of some word of X . 

Otherwise, 
{ }X u

 is a prefix code, and 
  FuX 

. This contradicts 

that X  is a F maximal prefix code. So u  is prefix-comparable with some 

prefix of some word of X . If there exists Xw , such that u  is 

prefix-comparable with w , then we consider the following two conditions. If 

u  is a prefix of w , then u is a prefix of 
XA . This is a contradiction. If w  

is a prefix of u , there exists 
 Aw , such that 

 XAwwu . So u  is 

a prefix of 
XA . From all above, we know u  is a prefix of 

XA . Thus for 

any word Fu , u  is a prefix of 
XA , we know 

XA  is right -F dense. 

(ii) (i) Since
XA is right -F dense, then for any XFu \ , u  is a 

prefix of 
XA . That is to say, there exist 

 Aww,
, and Xx , such that 

wxuw  . So u  is prefix-comparable with some prefix of some word of X . 

Therefore 
{ }X u

 is not a prefix code, thus X  is a -F maximal prefix 

code. 
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From the above proposition, we have the following corollary. 

Corollary 3.4. Let 
*F A  be a suffix-closed set, and X F  be a 

prefix code with nonempty words. Then the following statements are equivalent. 

(i) Every element of F  is prefix-comparable with some word of X ; 

(ii) 
XA  is right -F dense; 

(iii) X is an -F maximal prefix code; 

(iv) X  is right -F complete. 

Proposition 3.5. Let 
*F A  be a suffix-closed set, L F  which 

contains nonempty words, and 
 LALX \ . Then the following statements 

are equivalent. 

(i) L  is right -F complete； 

(ii) X  is an -F maximal prefix code. 

Proof. (i) (ii)  Since 
*F A  is suffix-closed and FL , and L  

has nonempty word, then we know L  is right -F complete. 

 Since 
LA  is right -F dense, then

  LAXA . So 
XA  is right 

-F dense. Therefore X  is an -F maximal prefix code. 

(ii)  (i)  Since X  is an -F maximal prefix code, then we know 
XA  is right -F dense. Then we have

  LAXA . So 
LA  is right -F

dense. By proposition 3.2, we know L  is right -F complete. 

Corollary 3.6. Let 
*F A be a suffix-closed set, and X F  be a 

prefix code. Then the following statements are equivalent. 

(i) X  is right -F complete; 

(ii) X  is an -F maximal prefix code. 

Proof.  Let XL  . Since X  is a prefix code, then 
 XAXX

. So 

it satisfies the conditions in proposition 3.5. Thus (i) is equivalent with (ii). 

Proposition 3.7. Let A  contain more than two letters and F A  be a 

set. If 
 u
uab u A F 

, and F  is  a suffix-closed set, then for all 

Fu , there exists Fv , such that Fuv  is an unbordered word. 

Proof. Assume a  be the first letter in u , and 
\{ }b A a

. If 
u

uabw   is an unbordered word, and t  is a nonempty prefix of w  which 

begins as the letter a  and a  is not the suffix of w . Otherwise  
ut 

, 

891

Advances in Engineering Research (AER), volume 117



but 
u

sabt  , which 
 As , and

s
uabt  . Therefore we have 

us 
. 

So wt  . Hence uvw   is an unbordered word for Fw . 

From the above proposition, we have the following result. 

Corollary 3.8. Let 
*F A  be a suffix-closed set and 

  FAuuab
u

 

. If X F  is an -F maximal code, then 
*X wA X    for all Fw . 

Proposition 3.9. Let 
*F A  be suffix-closed and 

 u
uab u A F 

. If X F  is an -F maximal code, then X  is 

-F complete. 

Proof. Since 
*F A  is a suffix-closed code, then 

  FAuuab
u

 

, and X F  is an -F maximal code. So by 

corollary 3.8, we know for any Fw , 
*X wA X   . Then for any 

Fw , we have 
* *A wA X   . Thus X  is -F complete. 

Proposition 3.10. Let 
*F A  be a recurrent set, and 

, ,P Q R F
. If 

QP
 is -F thin, then 

QP,
is -F thin. If R  is -F dense and P  is 

-F thin, then PR \  is -F dense. 

Proof.  


 Since 
QP,

 are -F thin, then there exists Fm  such 

that 
* *A mA P  . So there exists Fn  such that 

* *A nA Q 
. 

Since F  is recurrent, then there exists Fw  such that Fmwn . 

Therefore 
* *A mwA P  , and

* *A wnA Q 
. So 

 * *A mwnA P Q  
. Hence mwn  is not complete in 

QP
. 

Hence 
QP

 is -F thin. 


If 

QP
 is -F thin, then 

 * *A mwnA P Q  
 for some

Fm . So
* *A mA P  , and 

* *A wA Q 
. Therefore 

QP,
 is 

-F thin. If R  is -F dense, and P  is -F thin, then PR \  is not possible 

-F thin. Suppose PR \  is -F thin, then 
PPRR  )\(

 is -F thin, 

which contradicts R  is -F dense. 

892

Advances in Engineering Research (AER), volume 117



Proposition 3.11. Let 
*F A . Then every finite subset of F  is -F

thin. 

Proof. Let X F  and X  be a finite set. Let  Fm , and 

 Xxxm  max
. Then Fm , and 

* *A mA X  . Hence X  

is -F thin. 

Proposition 3.12. Let 
*F A be a recurrent set and 

,X Y F
 be 

nonempty sets. If 
YX ,

 are -F thin, then XY  is -F thin. 

Proof. Since 
YX ,

 are F thin, then there exists Fm  such that 

* *A mA X  . That is to say,
 XFm

, there exists Fn , and 

* *A nA Y  . Therefore 
 YFn

, because 
 AF  is recurrent. 

Then there exists Fw  such that Fmwn , because 
 XFm

. 

Therefore 
 XFmw

. Then 
 XYFmwn

. Thus
* *A mwnA XY  . Hence XY  is -F thin. 

Proposition 3.13. Let 
*F A  be a suffix-closed set, and X F  be 

-F thin and X  doesn’t contain the empty word. 

(i) X  is an -F maximal code and a prefix code; 

(ii) X  is an -F maximal prefix code; 

(iii) X  is a right -F complete code. 

Then we have (i)  (ii)   (iii). 

Proof. (i)  (ii) Since X  is an -F maximal code and a prefix code, 

and X  is -F thin, then X  is an -F maximal prefix code. 

(ii)   (iii) Since X  is an -F maximal prefix code, by proposition 3.3, 

we know 
XA  is right -F dense. Because 

 AF  is a suffix-closed set, 

by proposition 3.2, we know X  is right -F complete. 

4. Conclusion 

After the presentation of the definitions of -F prefix codes, -F bifix codes, 

-F dense sets, -F thin sets and -F complete sets, we mainly discuss the 

equivalent conditions for -F maximal prefix codes. In the future, we are going 

to consider the relationship among maximal -F codes, maximal -F infix 

codes, maximal -F comma-free codes and maximal -F prefix codes. We 
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want to give some structures of finite -F maximal prefix codes. 
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