
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Software fault debugging based on data flow analysis

Xi Guo1,a, Pan Wang2,b and Peng-Fei Wu3,c, †
1Department of Computer Science, College of Informatics,

Huazhong Agricultural University, Wuhan 430070, China
2Wuhan Electric Power Technical College, Wuhan 430079, Hubei, China

3Department of Computer Application, College of Informatics,

Huazhong Agricultural University, Wuhan 430070, China
axguo@mail.hzau.edu.cn, bwangpan6712063@163.com, cchriswpf@mail.hzau.edu.cn

*Corresponding author: Peng-Fei Wu

Data Flow Analysis is a difficult issue in the domain of fault localization, and many

software faults are related to the information of data flow. The dependency between the

variants and the define-use chain are discussed in this paper, and trace the impact to the

variants in the process of operation. In this paper, a data flow model is proposed which can

demonstrate the change of the variant value and the dependency between the variants and

it can be used to debug the faults in the program. Experimental results demonstrate that

this method has better results than the traditional methods.

Keywords: Software debug; Data flow analysis; Software testing.

1. Introduction

There are many kinds of software faults in the domain of software analysis, and

the fault relate to data flow is very important. Researchers have been working on

this theme for a long time, but current researches rarely focus on the aspects of

variant values and context information and so on, what is more, this information

is of vital importance to the analysis of fault localization.

In this paper, a data flow model is proposed which can monitor the change of

the variants and their dependency, and this can be used to debug the faults. The

degree of the relationship between the variants and the transition from one variant

to another are calculated both in success and failure testing.

At first, the fault localization via variant information is shown, and then

definition of data flow analysis is shown, and next, the method of fault localization

is discussed, the experiment results and future works are demonstrated at last.

2. Data Flow Analysis and Fault Localization

The value of the variants can be changed from the operation of the users, and the

data flow of the variants consists of the changes to the variants. The operation to

2nd Annual International Conference on Electronics, Electrical Engineering and Information Science (EEEIS 2016)

986

Advances in Engineering Research (AER), volume 117

the variants includes definition and use. The data flow analysis is the method

which can discover the incorrect definition and use of the variants, and record the

real time value to check the program states.

The coverage of use-define chain is used to debug the faults [1], which

calculates the degree of faults between each use-define chain. Delta debugging

forms the state chart by obtaining all the variants and their values[2], and then

find the variants that lead to the failure by observe the difference between the

correct and fault executions according to the sub chart. In order to improve the

efficiency of fault analysis and localization, some research focus on the program

spectrum that can be utilized to fault localization. The types of fault are studies,

and the process of Markov is used to predict the failure, and the select the proper

method to tackle the problem [3].

3. Data Flow Model

For a program S, its variant set V can be shown as V = {v1,v2,...,vn}. V can be

shown as V = 𝑉𝑐 ∪ 𝑉𝑟, where Vc is the variants that created in the execution of the

program, and Vr is the variants that created in return process after function calls.

The “use” of variant refers to the reference of the variant, and its value is accessed,

but cannot be changed. The “define” of variant means the value is modified. A

variant would be defined several times during the execution of a program, but its

value may not be changed. Thus, it would be difficult to distinguish the impact

from different locations. A variant can be modified by several code sections, so it

needs to find the states of the variant during execution.

The status of a variant can be defined as 𝑃 × 𝑉 × 𝑁 , where P is the

statements of the target program, and V is the variants during the execution of the

program, N records the times of the definition operation. Thus (l, v, n) is a tuple

of 𝑃 × 𝑉 × 𝑁, which means the program modifies the definition of variant v in

location l as the nth since the execution of the program. For any two states (l1, a,

n1) and (l2, b, n2), if they have the same value during the execution, that means a

and b are the same variants, and there is no definition between the two statements.

If n1 is less than n2, the source of the transition is (l1, a, n1) and the target is (l2, b,

n2), and vice versa.

The dependency between variants is defined as follows: if y is accessed in

define operation of x, y is depended on x. The relation between variants reveals

the impact from other variants. Let d be the dependent function[4]: 𝑃 × 𝑉 × 𝑁 →

𝐻(𝑃 × 𝑉 × 𝑁). For two define operations (l1, a, n1) and (l2, b, n2), if (𝑙1, 𝑎, 𝑛1) ∈

𝑑(𝑙2, 𝑏, 𝑛2), which means (l2, b, n2) is dependent on (l1, a, n1). The dependency

between a and b can be defined as follows:

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑎, 𝑏) = {((𝑙1, 𝑎, 𝑛1), (𝑙2, 𝑏, 𝑛2))|((𝑙1, 𝑎, 𝑛1)
∈ 𝑑(𝑙2, 𝑏, 𝑛2))}

987

Advances in Engineering Research (AER), volume 117

Where (l1, a, n1) is the precedent of the dependency, and (l2, b, n2) is the

descendant of the dependency. Variant can also be self-dependent, and there are

two kinds of dependent relations: the first kind is for different variants, such as z

= x + y, where z is dependent on x and y. The second kind is self-dependent, such

as x = x + 1, where the value of x generate dependent relation, that is the current

state is dependent on the previous one. Thus, this kind of self-dependent can be

defined as follows:

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑎, 𝑎) = {((𝑙1, 𝑎, 𝑛1), (𝑙2, 𝑎, 𝑛2))|((𝑙1, 𝑎, 𝑛1)
∈ 𝑑(𝑙2, 𝑎, 𝑛2))}

This is a special program dependent relation, and usually 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑎)

is short for 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑎, 𝑎).

The define operations in each variants and their dependent relations among

them forms a sequence, which is used to define the transition-dependency relation.

For a certain execution, the referred variants set is V = {v1,v2,…,vn}, the route of

the variant state transition can be defined as route(V), which is formally shown as:

𝑟𝑜𝑢𝑡𝑒(𝑉) = 𝑟𝑜𝑢𝑡𝑒(𝑣1) ∪ … ∪ 𝑟𝑜𝑢𝑡𝑒(𝑣𝑛)

The dependent relation in the states of variant definition can be defined as

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑉1, 𝑉2), and 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑉1, 𝑉2) can be obtained as follows:

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑉1, 𝑉2) = ⋃𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑣1𝑣2), where 𝑣1 ∈
𝑉1 𝑣2 ∈ 𝑉2

The data flow route DFR(V) can be expressed as follows:

DFR(V) = (Node, Edge)

Where Node is the set of vertex: Node = {(l1, x1, n1),…, (ln, xn, nn)}, and Edge

is the set of edges: 𝐸𝑑𝑔𝑒 = {(𝑎, 𝑏)|(𝑎, 𝑏) ∈ 𝑟𝑜𝑢𝑡𝑒(𝑉1) ∥ (𝑎, 𝑏) ∈

𝑟𝑜𝑢𝑡𝑒(𝑉1, 𝑉2)}.

During the process of data analysis, static and dynamic analysis methods are

combined to ensure the accuracy. The static analysis method is used to collect the

variants and statements, and the use and define information over these variants,

and the control flow graph(CFG) can also be generated. The dynamic method can

monitor the trace of the execution of the target variants.

4. Fault Debugging Method Based on Data Flow Information

After the trace collection of the program execution, the next step is
to find out the exact functions that may lead to failure. These target
functions may exist both in one class and in many classes. Usually,

988

Advances in Engineering Research (AER), volume 117

the route of success execution and that of the failure execution are
not the same.

According to check whether there are direct precedents nodes both in the

route of the success and failure executions, the nodes in the data flow model can

be divided into 3 parts:

(1) The current node has the dependent relation to the precedent node. The

node V has a direct precedent node, and their relation is dependency. The

conditional probability under 𝑉 = 𝑉𝑛 is:

𝑝(𝑁(𝑉 = 𝑉𝑛|𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑡(𝑉) = 𝑉𝑖))

𝑁(𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑡(𝑉) = 𝑉𝑖)

Where Precedent(V) is the set of precedent nodes. (𝑁(𝑉 =

𝑉𝑛|𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑡(𝑉) = 𝑉𝑖) is the existing times under condition of 𝑉 =

𝑉𝑛|𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑡(𝑉) = 𝑉𝑖 and 𝑁(𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑡(𝑉) = 𝑉𝑖) is the existing time under

condition of 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑡(𝑉) = 𝑉𝑖.

(2) The current node has direct precedent node, and the edge between them

is the type of transition. W The conditional probability under 𝑉 = 𝑉𝑛 is:

p(𝑉 = 𝑉𝑛) =
𝑁(𝑉 = 𝑉𝑛)

𝑁(𝑉)

Where 𝑁(𝑉 = 𝑉𝑛) is the existing number of times under 𝑉 = 𝑉𝑛 , and

𝑁(𝑉) is the existing number of times under 𝑉.

(3) The current node has no direct precedent node, and the calculation

method is the same as the former one.

After collecting the operation set of suspect variants, it would be order the

state of the variants by the degree of the suspicion, and it is possible to locate the

failure statements since there are line numbers in the operation of program static

analysis.

5. Experiment and Analysis

A demo is developed to verify the proposed method, the static analysis method

analyze the control flow, and generate the control flow graph, and find all the

possible defined variants and used variants, and then find all the use-define chain.

Meanwhile, the execution details, including line number and so on are recorded,

which can help to the dynamic analysis.

989

Advances in Engineering Research (AER), volume 117

A group of benchmarks are selected to compare the efficiency of the proposed

method. Some program are implanted several failures, which are related to the

data flow information, the details of these benchmarks are listed Table 1.

We compare our method to the traditional use-define chain method. Since

NalXml(V1) has the greatest number of failures, our experiment select is as the

benchmark. The experiment results are show in Table 2.

Table 1 Testing programs

Program Functions Line number Test cases Number of

failures

SortUtil sorting 513 9 2

NanlXml(V1) Context analyzer 3391 206 3

NanlXml(V2) Context analyzer 3507 267 5

Xml_security(V1) Context security

protocol

20921 108 5

Xml_security(V2) Context security

protocol

21973 117 3

Diff Context compare 729 62 2

Table 2 Comparison of the methods

Fault label

Use-define Chain Our method

Time

consumption(s)

Degree of

suspicious

Time

consumption(s)

Degree of

suspicious

Fault 1 3.5 0.31 4.9 0.52

Fault 2 4.6 0.57 9.3 0.66

Fault 3 19.5 0.63 25.5 0.71

Fault 4 15.1 0.47 21.9 0.57

Fault 5 23.5 0.29 35.7 0.43

The table above illustrates that our method consume more time than use-

define chain method, but our method can get a higher degree of suspicious, which

can help the researchers to debug the program more precisely and efficiently.

6. Conclusion

The faults about program control logic are related to the values of the variants,

and the changes to the variants also affect their dependency. Thus, the program

variants include uncertain features. In the future, we will continue to explore our

method, and try to improve the efficiency and time consumption and so on.

Acknowledgement

This project is supported by the Fundamental Research Funds for the Central

Universities under grant No. 2662015QC009 and the National Science

Foundation of China (NSFC) under grant No. 61502194.

990

Advances in Engineering Research (AER), volume 117

References

[1]. Santelices R, Jones JA, Yu YB, Harrold MJ. Lightweight fault-localization

using multiple coverage types. In: Proc. of the IEEE 31st Int’l Conf.

Washington: IEEE Computer Society, 2009. 56−66.

[2]. Zeller A. Isolating cause-effect chains from computer programs. In: Proc. of

the 10th ACM SIGSOFT Symp. on Foundations of Software Engineering.

New York: ACM Press, 2002. 1−10.

[3]. Zhang YQ, Zheng Z, Ji XH, Zhang WB, Zhang ZY. Markov model-based

effectiveness predicting for software fault localization. Jisuanji Xuebao,

2013,36(2):445−456(in Chinese).

[4]. Yang B, Wu J, Liu C. Software fault localization based on data chain. Ruan

Jian Xue Bao/Journal of Software, 2015, 26(2):254−268(in Chinese).

991

Advances in Engineering Research (AER), volume 117

