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Abstract—This paper proposed a numerical model to simulate 
the hydraulic fracture propagation based on the extended finite 
element method(XFEM), in which a fracture representation is 
explicit and independent of the mesh grid. The fully coupled 
formulation described various physical phenomena, including the 
solid skeleton deformation as well as the fluid flow in porous 
medium, along the fracture and through the fracture sides 
toward the surrounding porous medium. The interactive integral 
method is applied to calculate the stress intensity factor in 
consideration of fluid pressure on fracture faces. The maximum 
circumferential stress criterion is used for identifying the 
fracture growth condition and orientation. In comparison with 
the current existing XFEM models for hydraulic fracturing, this 
approach neither needs to introduce leak-off coefficient to 
describe the fluid leak-off phenomenon, nor requires to assume 
fracture propagation orientation. Data indicates that the model is 
valid through a comparison of the model numerical solutions 
with the semi-analytical(KGD) solution . In the end, fractures 
simultaneously propagate from three perforating clusters in the 
horizontal well is simulated at the end of this paper.  

Keywords-extended finite element method; hydraulic fracture 
propagation; the interactive integral; horizontal well 

I. INTRODUCTION 

Hydraulic fracturing has captured considerable attention in 
that it is widely used in engineering areas, including enhancing 
hydrocarbon production and geothermal energy extraction [1,2] 
and measurement of in-situ stresses[3,4], there are mainly four 
physical processes in hydraulic fracturing : the flow of the 
fracturing fluid within the fracture, the leak-off of the 
fracturing fluid from the fracture into the surrounding porous 
medium and flooding the pore fluid through the surrounding 
porous medium, mechanical deformation induced by fluid 
pressurizing, and fracture propagation. Those four processes 
are coupled with each other. The extended finite element 
method (XFEM), first brought forward by Belytschko and 
Black[5], is one of the most effective methods to solve fracture 
propagation problem[6]. There have been numerous studies on 
fluid-driven fracture propagation based on XFEM. 

Brice Lecampion[7] presented a XFEM for the solution of 
hydraulic fracture problems. Lamb et al.[8] presented a fracture 
mapping approach combined with the XFEM to simulate 
coupled deformation and fluid flow in fractured porous media, 
however, they both neglecting the fracture propagation.  

Ren et al.[9] presented an XFEM algorithm for hydraulic 
fracturing analysis with considering water pressure on the 
crack surface. Gordeliy and Peirce[10] described coupled 
algorithms that use the XFEM to solve the elastic crack 
component of the elasto-hydrodynamic equations that govern 
the propagation of hydraulic fractures in an elastic medium. 
But both of them ignored the filtration of fracturing fluid. 

Dahi-Taleghani [11] developed an XFEM algorithm to 
simulate fracture propagation, initiation and intersection in 
fractured reservoirs. Zhou et al.[12]combined the extended 
finite element and the finite volume methods to model 
hydraulic-driven fractures with arbitrary orientation in tight gas 
reservoirs. Wang[13] presented a fully coupled hydraulic 
fracture propagation model based on the extended finite 
element method, cohesive zone method  and Mohr–Coulomb 
theory of plasticity. However, their algorithm need to introduce 
leak-off coefficient to describe the fluid leak-off phenomenon. 

Carrier et al.[14] developed a zero-thickness finite element 
to model the hydraulic fracture, the fracture propagation is 
governed by a cohesive zone model and the flow within the 
fracture by the lubrication equation. Mohammadnejad and 
Khoei [15] carried out the extended finite element modeling of 
cohesive crack propagation in multiphase porous media, and 
they[16]subsequently proposed a fully coupled numerical 
model for the modeling of the hydraulic fracture propagation in 
porous media using the extended finite element method in 
conjunction with the cohesive crack model. Meschke and 
Leonhart[17] presented a numerical model to simulate the 
hydraulic fracture propagation based on the extended finite 
element method, in this model the enrichment functions are 
space and time variant. Although the above model not need to 
introduce leak-off coefficient to describe the fluid leak-off 
phenomenon, they are all assume that the fracture along the 
straight line extension. 

Dahi-Taleghani and Olson[18] use XFEM to study the 
interaction between pre-existing natural fracture and the 
advancing hydraulic fracture, and they [19] subsequently 
extend the numerical analysis of hydraulic-fracture/natural-
fracture interaction to the case of cemented natural fractures. 
Khoei[20] also use the XFEM to simulate the mechanism of 
interaction between the hydraulic fracturing and frictional 
natural fault. But they all consider the rock as impermeable 
media. 
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This paper presents a numerical model to simulate the 
hydraulic fracture propagation based on the extended finite 
element method. In comparison with the existing XFEM 
models for hydraulic fracturing, this approach neither needs to 
introduce leak-off coefficient to describe the fluid leak-off 
phenomenon, nor requires to assume fracture propagation 
orientation. 

II. GOVERNING EQUATIONS 

A. Descriptions of Physical Model 

The two-dimensional domain Ω bounded by the outer 
boundary Γ and the interior boundary Γf, the discontinuity Γf  
reflects the hydraulic fracture. Because the width of the 
fracture is far shorter than its length, the fracture can be 
regarded as a discontinuity line in the view of the whole 
domain[21]. But on a local scale the fracture is two-
dimensional domain Ωf and bounded by Γf

+ ∪Γf
-∪Γw ,the 

boundary Γw represents the wellbore, as clarified in Fig.1.The 
fluid flow inside both matrix domain and hydraulic fracture 
domain is regarded as single-phase, and Darcy’s law obeyed. 

 
FIGURE I.  DESCRIPTIONS OF PHYSICAL MODEL AND BOUNDARY 

CONDITIONS 

B. Strong Form 

The strong form of governing equations for the force 
equilibrium of the porous medium, fluid flow inside both 
matrix domain and fracture domain is demonstrated in this 
section. Hydraulic fracturing can be considered as a quasi-
static problem[12], therefore the domain’s  force equilibrium 
equation can be written as 

 0   

The relationship between stress and strain can be  expressed 
by mechanical constitutive Eq.(2),while the continuum 
condition inside the domain can be  described by the linear 
displacement–strain continuum Eq.(3) 

 D   

 L u  

where σ is stress (Pa), ε is the strain, D is elastic matrix , for 
plane strain state D can be described by Eq.(4),and L is 
differential operator can be described by Eq.(5) 
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where E is young’s modulus(Pa),ν is Poisson’s ratio. 

According to the law of mass conservation, the continuity 
equation for the fluid flow in the permeable porous medium is 
written as 
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Similarly, the continuity equation for flow inside the 
fracture domain is given by
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where αm is the Biot coefficient, is the porosity of matrix 
rock, Ks is the bulk modulus of solid phase(Pa), Kw is the bulk 
modulus of pore fluid(Pa), Km is the permeability tensor of 
matrix(m2),pm is the pore fluid pressure in matrix(Pa), pf is the 
fluid pressure in fracture (Pa), μ is the fluid viscosity(Pa.s), Kf  

is the permeability of fracture(m2), and Kf  is given by[32] 



2

f 12f

w
K

 

where w is the width of fracture(m), and f is the parameter 
accounting for the effect of the deviation from the ideal parallel 
fracture, ranging from 1.04 to 1.65. 

C. Boundary Conditions 

In order to derived the weak form of governing equations, 
the boundary conditions must be given .The Dirichlet and 
Neumann boundary conditions are imposed on the external and 
inner boundary of the matrix are given by Eq.(9) and Eq.(10), 
respectively. 
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where u is the prescribed displacement applied on the 

boundary Γu(m), mp  is the prescribed pressure imposed on the 

boundary Γp (Pa),  t  is the prescribed traction imposed on the 
boundary Γt (Pa) , q  is the prescribed inflow rate of the fluid 
applied on the boundary Γq(m3/s),nΓ is the unit outward normal 

vector to the external boundary Γ, fp  is the prescribed 

pressure imposed on the boundary Γf (Pa), fq  is the fluid 

exchange  rate  between the fracture and the surrounding 

porous medium on the boundary Γf  (m3/s), 
f

n  is the unit 

outward normal vector to the inner boundary Γf. 

The boundary conditions are imposed on the fracture are 
given by Eqs.(11) 
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where 
w

n is the unit outward normal vector to the boundary 

Γw,  wq  is the prescribed inflow rate of the fluid applied on the 

boundary Γw(m3/s). 

D. Weak Form 

According to the above strong-form equations and 
boundary conditions, weak-form equations can be derived 
based on the weighted residual method. 

The weak form of the equilibrium equation for the matrix is 
obtained as 


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where  
f

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f


n  are the unit normal vectors directed to Ω-
f  

and Ω+
f, respectively, as clarified in Fig. 1, and Γ+

f  and Γ-
f
  

represent the two sides of the discontinuity, the notation 

      represents the difference between the 

corresponding values at the two fracture faces, δε and δu both 
are the variation function, R is the coordinate transform matrix 
expressed as Eq.(13) , In

f is the unit normal vector of the 
fracture that expressed as Eq.(14). 
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The weak forms of equations for flow in matrix and 
fracture can be expressed as Eq.(15). 
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where wp is the weight function for fluid pressure. 

E. Discrete the Governing Equations by XFEM 

In the classic FEM, the displacement field is given by 

 ii
Nu u

  

where i is the index of the grid point, Ni is the shape function 
with ΣNi=1. 

Because the displacement field jump normal to the fracture, 
which is a strong discontinuity problem, Eq.(16) could not 
describe the discontinuous displacement field. Fortunately, the 
discontinuous displacement field can be approximated by the 
extended finite element method as  
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where the nodal set N is the set of all nodes in the discretized 
domain, Nenr is a set of nodes in the elements which are crossed 
by the fracture, Ntip is a set of nodes in the crack tip element(as 
shown in Fig.2), uai are the standard displacement degrees of 
freedom at node i, ubi and uci are the additive degree of freedom 
for the nodes in the cut elements and tip element, respectively. 
H(x) is the Heaviside enrichment function as given by Eq.(18), 
and H(xi) is the value of H(x) at the enriched node i 
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FIGURE II.  NODE SELECTION FOR ENRICHMENT FUNCTION 

ψ(x) is the near tip asymptotic enrichment function as given 
by Eq.(19), and  ψ(xi) is the value of ψ(x) at the enriched node i  
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where r and θ are the local polar coordinates at the fracture tip. 

The fracture width can be derived directly from Eq.(17) by 
subtracting displacements of the fracture surfaces from each 
other 
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Symbolically, Eq.(17)  can be rewritten as  


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a a b b c c  u = N u N u N u N u  

where Nu
a is the matrix of the standard displacement shape 

functions, Nu
b and Nu

c  is the matrix of the enriched 
displacement shape functions for fracture cut elements and tip 

element, respectively. au is the vector of the standard 

displacement degrees of freedom, bu  and cu is the vector of 

the enriched displacement degrees of freedom for fracture cut 
elements and tip element, respectively.  

Accordingly, the strain vector corresponding to the 
displacement field is given by Eq.(22). 
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Similarly, the pressure field is continuous at the fracture 
surface, while the derivative of pressure (flow rate) is 
discontinuous, which is a weak discontinuity problem. 
Therefore, the pressure field can be approximated by the 
extended finite element method as  
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where pai are the standard pressure degrees of freedom at node 
i, pbi and pci are the additive degree of freedom for the nodes in 

the cut elements and tip element, respectively. f(xi) is the 
value of f(x) at the enriched node i, Φ(x) is the near tip 
asymptotic enrichment function as given by Eq.(24), and  Φ(xi) 
is the value of Φ(x) at the enriched node i. 
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Symbolically, Eq.(23)  can be rewritten as 
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where Np
a is the matrix of the standard pressure shape 

functions, Nu
b and Nu

c  is the matrix of the enriched pressure 
shape functions for fracture cut elements and tip element, 

respectively. ap is the vector of the standard pressure degrees 

of freedom, bp and cp is the vector of the enriched pressure 

degrees of freedom for fracture cut elements and tip element, 
respectively.  

Substituting Eqs.(2),(21) and (22) into Eq.(12), and 

according to the irrelevance of the values of  au , bu  and 

cu ,the following equation is obtained 
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Symbolically, Eq.(26)  can be rewritten as 
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Substituting Eq.(25)  and Eq.(21) into Eq.(15), the XFEM 
discretization equation of Eq.(15) is gained considering the 

irrelevance of the values of ap , bp and cp  
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Symbolically, Eq.(28)  can be rewritten as 
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Coupling Eq.(27) and Eq.(29) 
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Symbolically, Eq.(30)  can be rewritten as 

 t
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Finally the task is to solve the Eq.(31). In order to  keep 
stability and eliminate the oscillatory effects in the solution, the 
discretized form of Eq.(31) is as follows: 

   nt+ t t+ t t+ t t+ t t+ tt t        A B X B X C
 

where t is the time, Δt is the time step. 

Eq. (33) requires Gauss integration of the parameter over 
the domain volume, the boundary, and the fracture. In this 
research, we choose 4-Gauss points in conventional element 
and 64-Gauss point in cut elements, tip elements, and their 
neighbours elements[23]. In addition, 6-Gauss points is set 
along the one-dimensional segments of the fracture delimited 
with the element edges to integrate the mechanical and mass 
transfer coupling terms along the fracture. 

F. Fracture Propagation and Orientation 

 Hydraulic fracture is the mixed mode fracture, the fracture 
tips will  propagate when the equivalent stress intensity factor 
Ke(expressed as Eq.(34)) is equal to fracture toughness of the 
rock KIC, and the propagate orientation relies on the maximum 
circumferential stress criterion so that the expression for 
fracture growth direction is given by Eq.(35)  



2
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         
    

where KI and KII are stress intensity factors, that can be 
obtained by interaction integral. 

For general mixed-mode problems, the interaction integral 
expression and its relationship between the stress intensity 
factors can be expressed as Eq.(36) and Eq.(37), 
respectively[24].  
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where superscript 1 and 2 represents two states, state 1 
corresponds to the present state and state 2 is an auxiliary state 
which will be chosen as the asymptotic fields for Mode I or 
Mode II[24],q,j is the derivative of the weight function q with 
respect to local xj-axis ,the region A and contour C+ ∪ C- as 
shown in Fig.3,W(1,2)  is the interaction energy expressed as 
Eq.(38),m2 is the 2nd component of the outward normal vector 
to the closed contour C+ ∪ C-∪Co, E*=E for plane stress and 
E*=E /(1-ν2) for plane strain ( E is Young's modulus, ν is the 
Poisson's ratio). 

 
         1,2 1 2 2 1

ij ij ij ijW        

Choosing the auxiliary state as the pure mode I 
asymptotic field (i.e.,    2 2

I II1, 0K K  )  and pure mode II 

asymptotic field (i.e.,    2 2
I II1, 0K K  ), respectively, KI and 

KII can be expressed as follows 
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*
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
 

*
1,Mode II

II 2

E
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 

The details for derivation can be found in Dolbow et al.[24]. 

 
FIGURE III.  THE CONTOUR AND DOMAIN TO COMPUTE THE 

INTERACTION INTEGRAL AND LOCAL COORDINATE 
SYSTEM AT THE FRACTURE TIP 
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III. MODEL VALIDATION 

Because the hydraulic fracturing is a complicated problem, 
no exactly solution could be found to verify our numerical 
model except for the simplest examples. Therefore the results 
obtained from the numerical simulation and simplified semi-
analytical(KGD) solution are presented in this part. This can be 
considered as verification of our model. The analytical 
expression for fracture length and fracture opening at the 
wellbore given as function of time t as [16] 


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1 6
3

2 3
f 2
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2 1

Eq
L t t
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2 3

1 3
2 1

0, 1.87
q

w t t
E

  
 
    

where q is the injection rate per unit height of the 
fracture(m2/s). 

Consider a 40 meters long and 50 meters wide 
computational domain meshed by the 200× 250 structured 
grid, the geometry and boundary condition of the example are 
depicted in Fig.4, in this example a fracture with an initial 
length of 0.5 meters is driven by the injection of a Newtonian 
fluid at the constant flow rate of 0.001m2/s, young’s modulus 
is 20GPa, Poisson’s ratio is 0.19, fracture toughness of the 
rock is 1.5 MPa.m1/2. 

Fig. 5 shows a comparison between the fracture length 
obtained from the numerical solutions and that obtained from 
the semi-analytical solutions. Good agreement between 
numerical predictions and semi-analytical solutions, and the 
maximal relative error is 4.1 %. The XFEM model predicts a 
slight smaller fracture length than KGD model at the same 
injection time, the reason for this is that KGD neglecting leak-
off effect. Fig.6 makes a comparison of the fracture width at 
the wellbore between the numerical and the semi-analytical 
solutions. Both computational results fit well with each other, 
the maximal relative error is 10 % at the beginning of the 
injection, but the relative error is under 5 % as the injection 
time increase. In other words, Fig.5 and 6 proved that the 
XFEM model has ability to model fracture propagation through 
fluid injection.  

 
FIGURE IV.  THE GEOMETRY AND BOUNDARY CONDITION OF THE 

VERIFICATION EXAMPLE 

 
FIGURE V.  FRACTURE LENGTH VERSUS INJECTION TIME, 

COMPUTED WITH NUMERICAL AND SEMI-ANALYTICAL 
(KGD)  MODELS 

 
FIGURE VI.  FRACTURE WIDTH AT THE WELLBORE VERSUS 

INJECTION TIME, COMPUTED WITH NUMERICAL AND SEMI-
ANALYTICAL (KGD) MODELS 

IV. NUMERICAL EXAMPLE 

In this section, we simulate fractures propagate 
simultaneously from three perforating clusters in the horizontal 
well. In the process of multi cluster fracturing, the flow 
distribution in the well is a dynamic process. When ignoring 
wellbore storage effects, the total injection rate is equal to the 
sum of the flow rate in all cluster  

 1

(t) = (t)
N

i
i

Q q



 

where qi(t) is the injection rate in No. i fracture (m3/s), N is the 
fracture number, Q(t) is the total injection rate(m3/s). 

By ignoring the wellbore frictional pressure drop, and 
according to the Kirchhoff’s second law, the fluid pressure in 
the wellbore heel (p0) is equal to the sum of perforation 
frictional pressure drop(ppf,i) and pressure at the fracture 
mouth(pw,i) 

 0 , ,w i pf ip p p 
 

and[25]  


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, 2 4 2

2.2326 10
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q
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n d




 

where ρ is the density of fracturing fluid (kg/m3), n is the 
number of perforation, d is the perforation diameter(mm), C is 
the flow coefficient. 
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This XFEM model has no limitations to calculate a large 
scale problem, however, in order to reduce the computational 
time, a small scale problem are considered. The fractures are 
assumed to be symmetrical about the wellbore, so only half of 
the fractures are modeled. Fig.7 shows the geometric model 
with a dimension of 25m×120m, three hydraulic fractures 
with initial lengths of 1m at 20m cluster space are considered. 
The fracture height is 50m. A far-field stress of -100MPa is 
applied on the right boundary, the displacement in X direction 
is 0 on the left boundary, and -70MPa is applied on the top and 
bottom boundaries, negative value of stress indicates 
compression. Besides the pore pressure at boundary is set to be 
constant with the value of the initial pore pressure 50MPa. In 
the following discussion, fracture 1, 2 and 3 represent the 
fractures which propagate from the bottom, middle and top 
cluster respectively as shown in Fig.7. 

 
FIGURE VII.  THE GEOMETRY AND BOUNDARY CONDITION OF 

THE MULTI-CLUSTER FRACTURING EXAMPLE 

The displacement in the y-direction by the end of 10 
seconds’ injection is shown in Fig.8. It is obvious that the 
displacement in the y-direction is discontinuous in the fracture. 
On the upper fracture surface, it is positive and on the lower 
face negative, it means the fracture is open.  

 
FIGURE VIII.  DISPLACEMENT IN Y-DIRECTION OF 20 M CLUSTER 

SPACE CASE 

The contours of rock stress in y-direction by the end of 
injection is shown in Fig.9. From Fig.9 we can infer that a high 
tensile stress area existing in front of the fracture tips dues to 
the tip singularity. And the rock among the fractures is 
compressed because the fluid pressure within the fracture 
directly squeeze the rock in y-direction .   

 
FIGURE IX.  ROCK STRESS IN Y-DIRECTION OF 20 M CLUSTER 

SPACE CASE 

Fracture width variation curves along fracture length by the 
end of injection is shown in Fig.10. As it can be seen, the width 
of fracture 1 and 3 is almost the same because of symmetrical 
characteristic of this model.The width curve of fracture 2 has a 
very good streamline property, whereas the width curves of 
fracture 1 and fracture 3 are shaped like the sawtooth. This is 
because fracture 2 approximately extend flatly, whlie fracture 1 
and fracture 3 bending propagate. The fracture width may have 
a local minima value at the fracture inflection point, which is 
detrimental to proppant transportation in fracture,and can lead 
to proppant screenout.  

 
FIGURE X.  WIDTH OF FRACTURE 1, 2 AND 3 OF 20 M CLUSTER 

SPACE CASE 

Fig. 11 show the pressure contours of the formation by the 
end of injection. As it can be seen, the fluid pressure in the 
fracture is higher than that in the matrix. Because the matrix 
permeability is very low, the pore fluid pressure at most areas 
of the formation remains 50MPa(the initial pore pressure), and 
only in a very small area around the fracture the fluid pressure 
increase because of the filtration of fracturing fluid. 

 
FIGURE XI.  FORMATION FLUID PRESSURE OF 20 M CLUSTER 

SPACE CASE 

V. CONCLUSIONS 

In the present paper, an improved approach to simulate 
hydraulic fracturing has been presented. The fully coupled 
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formulation was established based upon the flow continuity 
equation and the force equilibrium equation, which described 
the fluid flow along the fracture, flow through the fracture 
sides toward the surrounding porous medium and flow in the 
porous medium as well as the solid skeleton deformation. The 
fully coupled formulation was solved by the extended finite 
element method(XFEM). In comparison with the existing 
models for hydraulic fracturing, this approach has the 
following advantages: (1)No need to adopt leak-off coefficient 
to describe the fluid leak-off phenomenon;(2)No need to 
assume fracture propagation orientation;(3)No need to conform 
fracture sides with the element boundary and use special 
element near the crack tips; (4)After fracture propagation, 
remeshing is not a necessity. A comparison of the model 
numerical solutions with the semi-analytical solution indicates 
that the model is valid. Fractures simultaneously propagate 
from three perforating clusters in the horizontal well is 
simulated at the end of this paper. 
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