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Abstract—This paper presents a new active contour model with 
local intensities through level set method for ultrasound images 
segmentation. The method is not affected by the limitation of 
Gaussian distribution.  The model is designed by  local intensities, 
alignment term with a sharpening edge coefficient and 
regularization. Local intensities have the capability of denoising, 
and local means and variances are considered. The alignment 
term with a sharpening edge coefficient can sharpen edge and 
increase the convergence speed. The numerical schedule is 
implemented by level set method. Experimental results show that 
proposed method succeed to segment edges for ultrasound images. 
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I. INTRODUCTION  

Image segmentation plays a key role in image processing. 
Accurate segmentation has many applications such as medical 
images[1-10]. However, owing to noise, low contrast and 
intensity inhomogeneity still deserve research[11,12], for example, 
edge detection and thresholding[4]. 

Active contours[13] enables closed and smooth edges to be 
obtained. The existing active contour model methods have the 
methods of edge-based [13-15] and region-based[10,12,16-22]. They 
have own advantages and disadvantages. 

In these models, Gaussian distribution is assumed. However, 
intensity distribution in an image does not always meet the 
Gaussian distribution. The assumption limits its application. 

In this paper, a new segmentation model using variational 
level set for ultrasound image segmentation is proposed. A 
kernel function with localization, local intensity means and 
variances are utilized. An alignment term with a sharpening 
coefficient is introduced. It can extract object boundaries more 
accurately. Simulation experiments show that segmentation 
accuracy is improved. 

The context is organized: Introduction to proposed method 
in section 2, Section 3 shows experimental results, Conclusion 
is drawn in Section 5. 

II. THE PROPOSED MODEL 

The whole energy function has the following parts: local 

intensity NLIE , alignment term ATE , and the regularization 

component SE , they are defined as follows. 

A. New Local Intensity Information 

Let 2R  be an image domain, and :I R  a given 
gray level image,  is a level set function. For x , a new 
local intensity (NLI) model can be written : 
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where ic  denotes local mean, i is local standard variance of 

the i th region. i  is  weight parameter. sign  represents the 

sign function. 1 2,c c  can be worked out: 
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( )H  is Heaviside function. The Gaussian kernel 

( )K x y   decreases drastically to zero as y  goes away 

from x . It can be controlled by the scale parameter 0  . To 

compute the convolutions more efficiently, the kernel K  is 

truncated as a    2 1 2 1r r    mask, where r  is not less 

than 2 . If ( ) ( )iI y c x , ( ) ( ) 5 ( )i i id x c x x  . The 

energy will drive the evolving curve to move towards the 

position ( ) 5 ( )i ic x x . It has the effect of dilating. 

If ( ) ( )iI y c x , ( ) ( )i id x c x , the evolving curve will stop 

at the position ( )ic x . Otherwise, 

( ) ( )iI y c x , ( ) ( ) 5 ( )i i id x c x x  , the energy will 

drive the evolving curve to move towards the position 

( ) 5 ( )i ic x x . It has the effect of shrinking. The intuitive 

illustrations of the method are shown in Fig.1 (a) - (b).  

To sum up, the NLI energy function can be represented as 
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xE E d d dx


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B. Alignment Term with a Sharpening Edge Coefficient 

The alignment term can increase the attraction force. The 
sharpening edge coefficient can enhance weak boundaries. The 
robust alignment term with a sharpening edge coefficient can 
be defined as: 
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Where   denotes the gradient operator, ,  is inner 

product in 2R . N  represents outwards normal vector of C . 
ds  is arc length differential. The function g denotes an edge 

detector function, and    : 0, 0,g     satisfies: (1) 

g is a regular monotonic decreasing function; (2) (0) 1g  , 

lim ( ) 0
s

g s


 . In this paper, a typical choice of g  

is ( ) 1/ (1 / )g s s T   , T is a given threshold.  For 
sharpening weak edges, we introduce a sharpening edge 
coefficient. It can enhance the segmentation of some weak 
edges. The sharpening edge coefficient is defined as: 
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FIGURE I.  THE INTUITIVE ILLUSTRATIONS. (A) THE 
ILLUSTRATION OF EXPANDING FROM MEAN. (B) THE 

ILLUSTRATION OF SHRINKING TOWARDS MEAN 

C. Regularization Term 

In this part, a regularization [14] is proposed, and 
characterized by the following energy function: 
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In addition, a level set of penalizing contour length is 
introduced: 

( ) ( )L H dx 

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Therefore, the entire regularization component SE  energy 
function is 

  ( ) ( )SE P L       

where , 0    are weighting constants. 

D. Level Set Formulation 

The integrated level set formulation is 
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III. EXPERIMENTAL RESULTS 

The performances of proposed method are tested. All 
experiments are performed on a 2.4GHz Intel(R) Core(TM)2 
Duo CPU PC with 4G memory. In this section, some 
parameters are set as follows: 0 2c  , time step 0.1t  , 
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0.1  , 0.01  , 1.0  , 1 1.0  , 2 1.0   or 2.0 , 
20.01 255   or 20.08 255 . The values of   should 

be chosen carefully. Too small   or too large   may cause 
an undesirable result. It can be chosen according to the effect of 
noise in an image. In all the following experiments, we 
take 2.0,3.0,5.0  . 

A. Segmentation of Synthetic Images 

To test the performance of proposed method, we apply it to 
synthetic images with weak boundary, intensity inhomogeneity 
and different levels of speckle noise. 

From Fig.2, it can be seen that the proposed method 
successfully extract the object boundary. The LBF model fails. 
In Fig.2(c), the cross-sections of the middle rows of the object 
boundary are showed. The result of our method is 
approximated to the true boundary. The derivation is larger 
between the result of the LBF model and the true boundary. 

Secondly, due to the intensities distribution of a ultrasound 
image following the Rayleigh distribution[23], in this paper, the 
different level speckle noise following the Rayleigh 
distribution are added to original images, respectively. In Fig.3, 
the synthetic images are corrupted by speckle noise with 
different levels ( 5,10,15, 20  ). We compare the three 
existing methods with our method. LBF [11] and LIF[12] are 
sensitive to noise. Under the hypothesis condition of following 
Gaussian distribution, the LGD model [21] is insensitive to 
speckle noise, but it extracts the shadow, and the result is 
inaccurate. The proposed method has the capability of anti-
noise and also can segment the boundary successfully. 

 

           
(a)                                (b) 

  
(c) 

FIGURE II.  COMPARISON WITH TWO DIFFERENT METHODS. (A) 
RESULT OF THE LBF MODEL; (B) RESULT OF THE PROPOSED 
MODEL; (C) CROSS-SECTIONS OF THE MIDDLE ROWS OF THE 

TRUE BOUNDARY (RED), THE SEGMENTATIONS OF THE 
PROPOSED METHOD (BLACK) AND  THE LBF MODE L (BLUE) 

For comparison, our method has better capability of dealing 
with noisy image than the over three models in Fig.3. We can 

show by quantitative comparison that proposed method 
segments more contours than the other methods. Since the 
accurate position of object and background regions of the 
synthetic images are precisely known in advance as shown in 
the first row image in Fig.3, it is rational to use the root mean 
squared error (RMSE) for evaluating the performance. The 
RMSE measures a distance between the segmented contours 
and the exact object boundary. Then the RMSE is computed as 
follows: 
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The lower RMSE means that there are fewer pixels 
misclassified, i.e., the image can be segmented more 
accurately. The proposed method is applied to synthetic 
images with different levels of noise in Fig.3. Additionally, for 
comparison, the over three methods are also applied to the 
same images. From Table.1, we can see that the RMSE values 
of our method are the least than that of the others. 

 

 
FIGURE III.  COMPARISON WITH FOUR DIFFERENT METHODS FOR 

SYNTHETIC IMAGES WITH DIFFERENT LEVEL NOISE (FROM 

(A) TO (D) COLUMN: 
5,10,15,20 

) AND INTENSITY 
INHOMOGENEITY. 1ST ROW: ORIGINAL IMAGE WITH AN 

INITIAL CONTOUR AND TRUE BOUNDARY; 2ND ROW: 
RESULTS OF THE LBF MODEL; 3RD ROW: RESULTS OF THE 
LIF MODEL; 4TH ROW: RESULTS OF THE LGD MODEL; 5TH 

ROW: RESULTS OF OUR METHOD 
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TABLE I.  THE RMSES OF THE SEGMENTATION RESULTS OF 
SYNTHETIC IMAGES WITH DIFFERENT LEVEL NOISE 

Noise  
level 

RMSE 

LBF LIF LGD 
Proposed 
method 

5 1.05 27.64 5.81 0.83 
10 6.77 37.02 11.38 1.41 
15 9.63 45.93 13.62 1.94 
20 17.87 53.05 16.84 2.23 

B. Segmentation of Several Real Images 

Fig.4 presents the segmented results for real ultrasound 
images. From Fig.4, LBF and LIF model fail to segment. The 
local means only are considered in the two models, the local 
means cannot reflect accurately the change of intensities, and it 
also is sensitive to noise. The local means and variances are 
considered in the LGD model, it has the capability of 
segmenting some ultrasound images. However, the assumption 
of the LGD model is that the intensities follow the Gaussian 
distribution. In addition, the computational cost is large by the 
LGD model, and it can appear over-segmentation for weak 
boundaries. For example, the results of the third and fourth 
rows in Fig.4(c) appear over-segmentation. The LGD method 
also fails to extract multiple object boundaries for the image of 
the final row in Fig.4(c). The proposed model succeeds to 
segment the boundaries, and the over-segmentation does not 
appear. 

 

FIGURE IV.  RESULTS COMPARISON FOR REAL ULTRASOUND 
IMAGES WITH THE FOUR DIFFERENT METHODS. (A) 

RESULTS OF THE LBF MODEL; (B) RESULTS OF THE LIF 
METHOD; (C) RESULTS OF THE LGD MODEL; (D) RESULTS OF 

OUR MODEL 

C. Computational Time and Iterations 

The proposed method requires relatively high computational 
complexity. Table.2 presents the processing speeds of the four 
methods. All the four methods were performed on a 2.4GHz 
Intel(R) Core(TM) 2 Duo CPU PC with 4G memory using 
MATLAB. From Table.2, the proposed method requires more 
time to reach the satisfied results. The main reason is that the 
proposed method cost more time using the convolution 

between an image and the kernel function K . Additionally, 

local means and variances are computed. Computing the 

second term still need time. However, the iterations are less 
than the other three methods. The alignment term with a 
sharpening edge coefficient has the capabilities of sharpening 
edge and fast convergence. 

TABLE II.  COMPARISON WITH ITERATIONS AND 
COMPUTATIONAL TIME FOR THE IMAGES IN FIG.4 FROM TOP 

TO BOTTOM 

Method
 Image1 Image2 Image3 Image4 Image5

95×93 90×100 78×80 127×80 127×97

LBF 

  5.0 3.0 3.0 3.0 3.0 

Iteration 250 250 250 300 300 

Time 3.54 3.70 3.16 4.13 4.27 

LIF 

  5.0 5.0 5.0 5.0 5.0 

Iteration 300 300 300 300 300 

Time 8.16 1.09 5.69 8.84 10.45 

LGD 

  5.0 5.0 5.0 5.0 5.0 

Iteration 250 500 250 300 550 

Time 3.61 6.99 2.95 4.64 18.23 

Our 
method

  5.0 2.0 3.0 5.0 2.0 

Iteration 150 100 100 150 120 

Time 6.83 3.41 1.83 7.94 3.92 

 

IV. CONCLUSION 

In this paper, a new level set-based active contour model is 
proposed for ultrasound image segmentation. In this model, an 
energy function is formulated based on the new local intensity 
information and an alignment term with a sharpening edge 
coefficient. The energy function is computed through gradient 
descent flow to accomplish the segmentation task. 
Experimental results show that the proposed method can 
extract accurately the boundaries. Segmentation is compared 
with the results of the other three models. The RMSE values 
show the proposed method produces much better segmentation. 
The processing speeds of the proposed method and the other 
three methods are also studied. The speed of the proposed 
method is slightly slower than that of the other three methods. 
However, the accuracy of the proposed method is the highest 
and iterations are the least. 
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