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Abstract—Stochastic comparison on order statistics has been paid 
lots of attention recently. This paper devotes to investigating the 
stochastic comparison properties of residual life and inactivity 
time at random time. Preserved properties of some stochastic 
comparisons on the residual life and inactivity time at random 
time of order statistics are established.  When the number of 
random variables is random, the stochastic comparison results 
are presented as well. 
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I.  INTRODUCTION  

Order statistics play a central role in statistics and a lot of 
work has been done in the literature on different aspects of this 
problem. Let X1:n ≤X2:n ≤…≤Xn:n be the order statistics 
corresponding X1, X2,… , Xn, a sample of size n form the 
population X. In auction theory, Xi:n can be regarded as the i-th 
bidding price if the valuations of bidders are independent and 
identical (i.i.d.) random variables. In reliability, the i-th order 
statistics Xi:n gives the total life of a (n-i+1)-out-of-n system 
with i.i.d. components of life X. In the past decades, much 
attention has been paid to investigate the properties of order 
statistics. For more details of these properties, readers can refer 
to Davia and Nagaraja(2003) for a comprehensive discussion.  

Before proceeding to state our main results, we firstly recall 
several criteria for comparison random variables and some 
notions which will be used in this paper. These criteria widely 
used in describing notions of aging in reliability theory. Let X 
and Y be two random variables with absolutely continuous 
cumulative distribution functions F(x) and G(x), and their 
density functions are f(x),g(x), respectively． 

Definition 1.1 (a) Y is said to be larger than X in the hazard 

rate order (denoted by hrX Y ) if ( ) / ( )F x G x  decreases 

in x. 
(b) Y is said to be larger than X in the reversed hazard rate 

order (denoted by rhX Y ) if ( ) / ( )F x G x  decreases in x.  

(c) Y is said to be larger than X in the likelihood ratio order 
(denoted by lrX Y ) if ( ) / ( )f x g x  decreases over the 

union of the two supports. 

For convenience, relations among these orderings are 
presented in the following: 

( )lr hr rh stX Y X Y X Y      

 Assume X and Y, two component lifetimes, to be random 
variables. The residual life and the inactivity time of the used 
components with age t>0 are respectively defined as Xt=(X-
t|X>t),X(t) =(t-X|X<t). Series systems and parallel systems are 
two familiar reliability structures. In practical situation, one 
often meets used system composed of new units. Li and Zhang 
(2002)[1] have proved that the life of a parallel or series system 
composed of used i.i.d. elements is stochastically larger than 
that of a used parallel or series system. Pellerey and Petakos 
(2002)[2]obtained a more general conclusion, which asserts 
that the life of a coherent system composed of used elements is 
stochastically larger than that of a used coherent system. Li and 
Lu (2003)[3] established some stochastic comparison results on 
their inactivity time and residual life for parallel or series 
system, respectively.  

Now we briefly review the concepts of the residual life and 
inactivity time of X at a random time. Let T be a random 
variable with distribution function H(t), and probability density 
function h(t). Further, suppose that X and T are statistically 
independent. The random variable XT = (X − T | X > T) is called 
the residual life of X at random time T (RLRT). The random 
variable X(T )= (T− X | X < T ) is called the inactivity time of X 
at random time T (ITRT). The idle time of the server in a 
GI/G/1 queuing system can be expressed as a RLRT. In 
reliability theory, if X is regarded as the total random life of a 
warm stand-by unit with an age of T.  For more details about 
residual life and inactivity time and RLRT, see [4-15]. 

The concept of residual life and inactivity time at some 
random time plays an important role in reliability, survival 
analysis and life testing. In this paper, we present some results 
for stochastic comparisons of residual life and inactivity time 
of order statistics at random time. In particular, we establish 
some stochastic comparisons the residual life and inactivity 
time of order statistics at random time. Some comparisons of 
the inactivity time and the residual life at random time are 
presented as well． 

II. MAIN RESULTS 

Let Fj:n(x) be the distribution of the j-th order statistic in a 
sample of n from F. Then Fj:n(x)=Bj:n[F(x)] for x>0, where 

1
: 0

!
( ) (1 ) d

( 1)!( )!

p j n j
j n

n
B p u u u

j n j
  

    

for 0< p< 1. In actuarial science, Xj:n can be regarded as j-th bid 
price if the valuations of bidders are i.i.d. random variable X. In 
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reliability, j-th order statistics Xj:n can be regarded as the life of 
a (n-j+1)-out-of-n systems with i.i.d. components of life X .  

Before stating our main conclusions, we firstly introduce 
the following lemmas (See [4]) which will be used in sequel.  

Lemma 2.1 Let X and Y be two independent random 
variables. Let 1  and 2 be two bivariate functions. Denote  

21 2 1( , ) ( , ) ( , )x y x y x y     . 

Then X ≤lr Y if, and only if, 1 2( , ) ( , )E X Y E X Y   

for all 1  and 2 such that 21( , ) 0x y   whenever x y ,  

and 21 21( , ) ( , )x y y x      whenever x y . 

Lemma 2.2 Let X and Y be two independent random 

variables. Let 1  and 2 be two bivariate functions. Denote  

21 2 1( , ) ( , ) ( , )x y x y x y    
. 

Then X ≤hr Y if, and only if, 1 2( , ) ( , )E X Y E X Y   

for all 1  and 2 such that ,for each x, 21( , )x y increases in 

y on { }y x , and such that 21 21( , ) ( , )x y y x      

whenever x y . 

Lemma 2.3 Let X and Y be two independent random 

variables. Let 1  and 2 be two bivariate functions. Denote  

21 2 1( , ) ( , ) ( , )x y x y x y    
. 

Then X ≤hr Y if, and only if, 1 2( , ) ( , )E X Y E X Y   

for all 1  and 2 such that ,for each y, 21( , )x y decreases in 

x on { }y x , and such that 21 21( , ) ( , )x y y x      

whenever x y . 

Now, we present our main results. 

Theorem 2.1 Assume that X and Y are independent (not 
necessarily identical), T is a non-negative random variable, and 
T, X and Y are independent. If X ≤lr Y, then for any 1≤i≤n ,  

: :( ) ( )i n t lr i n tX Y
. 

Theorem 2.2 Assume that X and Y are independent (not 
necessarily identical), T is a non-negative random variable, and 
T, X and Y are independent. If X ≤lr Y, then for any 1≤i≤n ,  

: :( ) ( )i n T lr i n TX Y .  

Proof Since X≤lrY, then  

 : :( ) ( )i n t lr i n tX Y  

Suppose 1( , )x y and 2 ( , )x y satisfy Lemma 1, by (1) and 

Lemma 1 we have  

1 : : 2 : :(( ) , ( ) ) (( ) , ( ) )i n t i n t i n t i n tE X Y E X Y 
 

Hence 

1 : : 1 : :(( ) , ( ) ) [ ( (( ) , ( ) ) | )]i n T i n T i n T i n TE X Y E E X Y T   

1 : :0
( (( ) , ( ) ) | ) ( )i n T i n TE X Y T t h t dt


   

1 : :0
( (( ) , ( ) )) ( )i n t i n tE X Y h t dt


   

2 : :0
( (( ) , ( ) )) ( )i n t i n tE X Y h t dt


   

2 : :0
( (( ) , ( ) ) | ) ( )i n T i n TE X Y T t h t dt


   

1 : :[ ( (( ) , ( ) ) | )]i n T i n TE E X Y T  

2 : :(( ) , ( ) )i n T i n TE X Y  

By Lemma 1, : :( ) ( )i n T lr i n TX Y .   

Corollary 2.1 Let 1 2, , , nX X X and  1 2, , , nY Y Y  are 

i.i.d. copies of X and Y, respectively, and T is a non-negative 
random variable. If X ≤lr Y , then  

1 2 1 2(max{ , , , }) (max{ , , , })n T lr n TX X X Y Y Y   

1 2 1 2(min{ , , , }) (min{ , , , })n T lr n TX X X Y Y Y   

Theorem 2.3 Assume that X and Y are independent (not 
necessarily identical), N be a positive integer-valued random 
variable which is independent of the X and Y are independent.  

If X ≤lr Y, then : :( ) ( )i N t lr i N tX Y   

Proof Since X ≤ lrY, then : :( ) ( )i n t lr i n tX Y . Suppose 

1( , )x y and 2 ( , )x y satisfy Lemma 1, then  

1 : : 2 : :(( ) , ( ) ) (( ) , ( ) )i n t i n t i n t i n tE X Y E X Y   

Hence 

1 : : 1 : :(( ) , ( ) ) [ ( (( ) , ( ) ) | )]i N t i N t i N t i N tE X Y E E X Y N   

1 : :
1

( (( ) , ( ) ) | ) ( )i N t i N t
n

E X Y N n P N n




    

1 : :
1

( (( ) , ( ) )) ( )i n t i n t
n

E X Y P N n




   

2 : :
1

( (( ) , ( ) )) ( )i n t i n t
n

E X Y P N n




   

2 : :
1

( (( ) , ( ) ) | ) ( )i N t i N t
n

E X Y N n P N n




    

1 : :[ ( (( ) , ( ) ) | )]i N t i N tE E X Y N  

2 : :(( ) , ( ) )i N t i N tE X Y  

By Lemma 1, : :( ) ( )i N t lr i N tX Y .  
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Theorem 2.4 Assume that X and Y are independent (not 
necessarily identical), T is a non-negative random variable, N 
be a positive integer-valued random variable which is 
independent  of the X and Y , and T, X and Y are independent. If 
X ≤lr Y, then  

: :( ) ( )i N T lr i N TX Y
.  

Proof Since X≤lrY, by theorem 2.3 : :( ) ( )i N t lr i N tX Y . 

Suppose 1( , )x y and 2 ( , )x y satisfy Lemma 1, by Lemma 1 

we have  

1 : : 2 : :(( ) , ( ) ) (( ) , ( ) )i N t i N t i N t i N tE X Y E X Y 
 

Hence 

1 : : 1 : :(( ) , ( ) ) [ ( (( ) , ( ) ) | )]i N T i N T i N T i N TE X Y E E X Y T 
 

1 : :0
( (( ) , ( ) ) | ) ( )i N T i N TE X Y T t h t dt


   

1 : :0
( (( ) , ( ) )) ( )i N t i N tE X Y h t dt


   

2 : :0
( (( ) , ( ) )) ( )i N t i N tE X Y h t dt


   

2 : :0
( (( ) , ( ) ) | ) ( )i N T i N TE X Y T t h t dt


   

1 : :[ ( (( ) , ( ) ) | )]i N T i N TE E X Y T  

2 : :(( ) , ( ) )i N T i N TE X Y  

By Lemma 1, : :( ) ( )i N T lr i N TX Y .   

Corollary 2.2 Let 1 2, , ,X X  and  1 2, , ,Y Y   are i.i.d. 

copies of X and Y, respectively. Let N be a positive integer-
valued random variable which is independent of the X and Y. If 
X ≤lr Y , then  

1 2 1 2(max{ , , , }) (max{ , , , })N T lr N TX X X Y Y Y 
 

1 2 1 2(min{ , , , }) (min{ , , , })N T lr N TX X X Y Y Y 
 

Theorem 2.5 Assume that X and Y are independent (not 
necessarily identical), T is a non-negative random variable, and 
T, X and Y are independent. If X ≤hr Y, then  

1 2 1 2(min{ , , , }) (min{ , , , })n T hr n TX X X Y Y Y  . 

Proof For fixed t>0, Let 1 2(min{ , , , })t n tM X X X  , 

1 2(min{ , , , })t n tN Y Y Y  , then 

1:

1:

( ) ( )
( )

( ) ( )

n
n

t n
n

F x t F x t
P M x

F t F t

 
   , 

1:

1:

( ) ( )
( )

( ) ( )

n
n

t n
n

G x t G x t
P N x

G t G t

 
    

Since X ≤hr Y , then ( ) / ( )G x F x is increasing in x. Thus 

1 1( ) / ( )P N x P M x  is increasing in x, hence  

1 2 1 2(min{ , , , }) (min{ , , , })n t hr n tX X X Y Y Y 
 

Suppose 1( , )x y and 2 ( , )x y satisfy Lemma 2.2, then 

1 2( , ) ( , )t t t tE M N E M N 
 

Let 1(min{ , , })T n TM X X  , 

1(min{ , , })T n TN Y Y   

Hence 

1 1( , ) [ ( , ) | )]T T T TE M N E E M N T   

10
( ( , )) | ) ( )T TE M N T t h t dt


   

10
( ( , )) ( )t tE M N h t dt


   

20
( ( , )) ( )t tE M N h t dt


   

20
( ( , )) | ) ( )T TE M N T t h t dt


   

2[ ( ( , )) | )]T TE E M N T 2 ( , )T TE M N  

By Lemma 2.2, T hr TM N , that is  

1 2 1 2(min{ , , , }) (min{ , , , })n T hr n TX X X Y Y Y 
. 

Corollary 2.3 Let 1 2, , ,X X  and  1 2, , ,Y Y   are i.i.d. 

copies of X and Y, respectively. If X ≤hr Y, then  

1 2 1 2(min{ , , , }) (min{ , , , })n t hr n tX X X Y Y Y 
 

Theorem 2.6 Assume that X and Y are independent (not 
necessarily identical), T is a non-negative random variable, N 
be a positive integer-valued random variable which is 
independent  of the X and Y , and T, X and Y are independent. If 
X ≤hr Y, then  

1 2 1 2(min{ , , , }) (min{ , , , })N t hr N tX X X Y Y Y 
.  

Theorem 2.7 Assume that X and Y are independent (not 
necessarily identical), T is a non-negative random variable, and 
T, X and Y are independent. If X ≤lr Y, then for any 1≤i≤n ,  

: ( ) : ( )( ) ( )i n T lr i n TX Y
.  

Corollary 2.4 Let 1 2, , , nX X X and  1 2, , , nY Y Y  are 

i.i.d. copies of X and Y, respectively, and T is a non-negative 
random variable. If X ≤lr Y , then  

1 2 ( ) 1 2 ( )(max{ , , , }) (max{ , , , })n T lr n TX X X Y Y Y 
 

1 2 ( ) 1 2 ( )(min{ , , , }) (min{ , , , })n T lr n TX X X Y Y Y 
 

Theorem 2.8 Assume that X and Y are independent (not 
necessarily identical), T is a non-negative random variable, N 
be a positive integer-valued random variable which is 
independent  of the X and Y , and T, X and Y are independent. If 
X ≤lr Y, then  

: ( ) : ( )( ) ( )i N T lr i N TX Y
.  

Proof Since X≤lrY, then : ( ) : ( )( ) ( )i n t lr i n tX Y .  
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Suppose 1( , )x y and 2 ( , )x y satisfy Lemma 2.1, then  

1 : ( ) : ( ) 2 : ( ) : ( )(( ) , ( ) ) (( ) , ( ) )i n t i n t i n t i n tE X Y E X Y 
 

Hence 

1 : : ( ) 1 : ( ) : ( )(( ) , ( ) ) [ ( (( ) , ( ) ) | )]i N t i N t i N t i N tE X Y E E X Y N 

        1 : ( ) : ( )
1

( (( ) , ( ) ) | ) ( )i N t i N t
n

E X Y N n P N n




    

1 : ( ) : ( )
1

( (( ) , ( ) )) ( )i n t i n t
n

E X Y P N n




   

2 : ( ) : ( )
1

( (( ) , ( ) )) ( )i n t i n t
n

E X Y P N n




   

2 : ( ) : ( )
1

( (( ) , ( ) ) | ) ( )i N t i N t
n

E X Y N n P N n




    

1 : ( ) : ( )[ ( (( ) , ( ) ) | )]i N t i N tE E X Y N  

2 : ( ) : ( )(( ) , ( ) )i N t i N tE X Y  

By Lemma 2. 1, : ( ) : ( )( ) ( )i N t lr i N tX Y .                              

Suppose 1( , )x y and 2 ( , )x y satisfy Lemma 1, by (3) and 

Lemma 2.1 we have  

1 : ( ) : ( ) 2 : ( ) : ( )(( ) , ( ) ) (( ) , ( ) )i N t i N t i N t i N tE X Y E X Y 
 

Hence 

1 : ( ) : ( ) 1 : ( ) : ( )(( ) , ( ) ) [ ( (( ) , ( ) ) | )]i N T i N T i N T i N TE X Y E E X Y T 

       1 : ( ) : ( )0
( (( ) , ( ) ) | ) ( )i N T i N TE X Y T t h t dt


   

1 : ( ) : ( )0
( (( ) , ( ) )) ( )i N t i N tE X Y h t dt


   

2 : ( ) : ( )0
( (( ) , ( ) )) ( )i N t i N tE X Y h t dt


   

2 : ( ) : ( )0
( (( ) , ( ) ) | ) ( )i N T i N TE X Y T t h t dt


   

1 : ( ) : ( )[ ( (( ) , ( ) ) | )]i N T i N TE E X Y T  

2 : ( ) : ( )(( ) , ( ) )i N T i N TE X Y  

By Lemma 1, : ( ) : ( )( ) ( )i N T lr i N TX Y .   

Corollary 2.5 Let 1 2, , ,X X  and  1 2, , ,Y Y   are i.i.d. 

copies of X and Y, respectively. Let N be a positive integer-
valued random variable which is independent of the X and Y. If 
X ≤lr Y , then  

1 2 ( ) 1 2 ( )(max{ , , , }) (max{ , , , })N T lr N TX X X Y Y Y   

1 2 ( ) 1 2 ( )(min{ , , , }) (min{ , , , })N T lr N TX X X Y Y Y   

Theorem 2.9 Let 1 2, , ,X X  and  1 2, , ,Y Y   are i.i.d. 

copies of X and Y, respectively.  If X ≤rh Y, then  

1 2 ( ) 1 2 ( )(max{ , , , }) (max{ , , , })n t hr n tX X X Y Y Y 
. 

Theorem 2.10 Assume that X and Y are independent (not 
necessarily identical). If X ≤rh Y, then  

1 2 ( ) 1 2 ( )(max{ , , , }) (max{ , , , })N t hr N tX X X Y Y Y 
 

Theorem 2.11 Assume that X and Y are independent (not 
necessarily identical), T is a non-negative random variable, and 
T, X and Y are independent. If X ≤rh Y, then  

1 2 ( ) 1 2 ( )(max{ , , , }) (max{ , , , })n T hr n TX X X Y Y Y 
 

Proof Let 1 2 ( )(max{ , , , })T n TA X X X  , 

1 2 ( )(max{ , , , })T n TB Y Y Y  , 

1 2 ( )(max{ , , , })t n tA X X X  , 

1 2 ( )(max{ , , , })t n tB Y Y Y  , 

Since X ≤rh Y, by theorem2.10,we have t hr tA B  

Suppose 1( , )x y and 2 ( , )x y satisfy Lemma 2.2, then  

1 2( , ) ( , )t t t tE A B E A B 
 

Hence 

1 1( , ) [ ( ( , ) | )]T T T TE A B E E A B T 

10
( ( , )) | ) ( )dT TE A B T t h t t


   

10
( ( , )) ( )dt tE A B h t t


   

20
( ( , )) ( )dt tE A B h t t


   

20
( ( , )) | ) ( )dT TE A B T t h t t


   

2[ ( ( , )) | )]T TE E A B T  

2 ( , )T TE A B  

By Lemma 2.3, T hr TA B , that is 

1 2 ( ) 1 2 ( )(max{ , , , }) (max{ , , , })n T hr n TX X X Y Y Y 
 

Theorem 2.12 Assume that X and Y are independent (not 
necessarily identical), T is a non-negative random variable, N 
be a positive integer-valued random variable which is 
independent  of the X and Y , and T, X and Y are independent. If 
X ≤rh Y, then  

1 2 ( ) 1 2 ( )(max{ , , , }) (max{ , , , })N T hr N TX X X Y Y Y 
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