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Abstract—The Wigner-Ville distribution (WVD) in the offset 
linear canonical transform (OLCT) domain (WOL) is a tool for 
signal processing and optics, which has the advantages of the 
OLCT and good properties of WVD. In this paper, a more simple 
definition of the WOL is introduced, without changing the 
instantaneous autocorrelation function to generalization form. 
Moreover, some new and important properties of the WOL are 
derived. 
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I. INTRODUCTION 

The offset linear canonical transform (OLCT) [1]–[4] is a 
linear integral transform with six parameters  ,,,,,, 00 udcba  
which is also known under different names, the 
inhomogeneous canonical transform [1] or the special affine 
transformation [5]. It has found wide applications in several 
areas, including applied mathematics, optics, engineering, and 
signal processing. Many properties of the OLCT have been 
intensively researched and studied. Widely used operations, 
such as the Fourier transform (FT) [6], fractional Fourier 
transform (FrFT) [7], linear canonical transform (LCT) [4], 
[8]–[16], Fresnel transform [17], Laplace transform, and time 
scaling operations are all special cases of the OLCT. 

The Wigner-Ville distribution (WVD) is a special type of 
quasi-probability distribution, which was first proposed in 
physics by Wigner. Later Ville re-derived it as a quadratic 
representation of the local time-frequency energy of a signal.  
Among well-known time–frequency methods, such as the 
chirp-Fourier transform [18], the Radon-ambiguity transform 
[19], and the Wigner-Hough transform [20], the WVD can 
furnish higher clarity in the linear-frequency-modulated (LFM) 
signal detection and parameter estimation, which is important 
for the signal processing and engineering community. 

Based on the properties of the LCT and the WVD, Pei and 
Ding [9] investigated WVD of the signal  .,,, uF dcba  Unlike 

the definition of WVD associated with the LCT in [9], Bai et 
al. in [10] proposed generalized kind of WVD in the LCT 
domain (WDL), which can be thought as the affine transform 
of the autocorrelation function of  хf  in the time-frequency 
plane. In [4] and [14], authors have defined a kind of novel 
WVD in the LCT domain (WL) separately. The WL is a new 

signal processing tool, which has the elegance and simplicity 
in marginal property and affine transformation relationships 
associated with the LCT comparable to the WVD. Also in [4] 
proposed further generalization of the WL—the WVD in the 
OLCT domain (WOL), by using generalized form of the 
instantaneous autocorrelation function. But authors have not 
discussed the WOL in depth enough. This paper presents a 
more simplified definition of the WOL by using the classical 
instantaneous autocorrelation function instead of using 
generalized form of the instantaneous autocorrelation function 
shown in [4]. Then, we deduce some new properties of the 
WOL with its detailed proves. Furthermore, we provide a new 
way to calculate the instantaneous frequency. 

This paper is organized to include at first the introduction, 
followed by “Preliminary” section which briefly introduce the 
review of the related theory of the OLCT, the WVD, and the 
previous research outputs. In Section III “WVD in the OLCT 
domain”, a novel definition of WVD associated with the 
OLCT is proposed. The new properties of WOL are 
investigated in details in Section IV “Properties of the WOL”. 
Section V concludes this paper. 

II. PRELIMINARY 

The preliminary spots light on reviewing the already 
established definitions and previous researches. 

A. The Offset Linear Canonical Transform (OLCT) 

The OLCT [1]–[4] is a six-parameter class of linear 
integral transform. It is more flexible and general than the 
LCT for its two extra parameters 0u  and 0  which 
correspond to time shifting and frequency modulation, 
respectively.  

The OLCT with real parameters of  00 ,,,,, udcbaA   of 

a signal  tf  is defined by [1]–[4] 
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and .1 bcad  The definition for case 0b  is the limit of 
the integral in above for the case 0b  as .0b  Therefore, 

from now we shall confine our attention to OLCT for .0b  
And without loss generality, we always assume 0b  in the 
following sections of  the paper.  

The OLCT as a generalization of many other linear 
transforms has had a great development and has found wide 
applications in applied mathematics, signal processing and 
optics. The OLCT can solve some problems that cannot be 
solved well by its special cases. In this point, the development 
of the relevant theorems for OLCT helps to achieve more 
insights and to serve knowledge exchange from one subject to 
others. 

For more definitions and properties of the OLCT, 
interested readers can refer to [3]. 

B. The Wigner-Ville Distribution (WVD) 

The classical WVD of a signal  tf  defined as the FT of 

 ,tR f  for  [4], [8], [10]–[14], [16] 

    ,,, 
   detRtW i

f                       (2) 

where  ,tR f  is the instantaneous autocorrelation function 

of a signal  tf   
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The WVD is one of the most useful time-frequency 
analysis tool and has a series of good properties. Some 
properties of WVD are listed in [8], [10], [11]. 

C. Previous Research Outputs 

With the development of the modern signal processing 
technology, a series of novel time-frequency representations 
have been proposed through combining the classical signal 
processing tools with the LCT [4], [9]–[14].  

The WVD associated with the LCT (LCWD) given in [9] 
is a tool for the separation of multi-component signals. It is 
defined as 
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where  uFA  is the LCT of signal  tf  with parameter matrix 
.A  The LCT is equivalent to an affine or rotation operation for 

the WVD 

   ,,, avcubvduWDvuWD fA   

where fWD  is the WVD of  tf  [9]. 

According to (2), we know that the WVD is the FT of 
instantaneous autocorrelation function. Recently, Bai et. al 
obtained WVD in the LCT domain (WDL) by substituting the 
orthogonal kernel of the FT with the non-orthogonal kernel of 
the LCT [10] 
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Although, in [10]–[12], [16] authors investigated the 
various properties and applications of the WDL. The WDL is a 
generalized form of LCWD and WVD.  

In order to estimate QFM signal parameters, Song et al. 
defined a new kind of WVD—the generalized WVD based on 
the LCT (GWDL) [12]. Zhang proposed the WVD based on 
the generalized convolution in the LCT domain (LWD) [13]. 
However, the WDL, GWDL, and LWD have a bit of 
complexity comparing to the WVD and have no affine 
transformation relationships between the LCT and WDL, 
GWDL, and LWD. Focusing on this issues, Urynbassarova et 
al. and Zhang have proposed a kind of novel WVD based on 
LCT domain (WL) separately in [4], [14]. They shows the WL 
is a simpler time-frequency analysis tool than the LWD, WDL 
and LCWD. Also in [4] proposed further generalization of the 
WL—the WVD based on the OLCT domain (WOL) by using 
generalized form of the instantaneous autocorrelation function. 
The WOL is a new signal processing tool, which has the 
elegance and simplicity in marginal property and affine 
relation associated with the OLCT in comparison with the 
WVD. But authors have not discussed the WOL in depth 
enough. This paper serves to simplify more the definition of 
the WOL and deduce new properties of WOL with its proves. 

III. THE NEW DEFINITION OF WVD IN THE OLCT DOMAIN 

In this Section, the cross and auto WOL are defined and 
some essential properties are deduced. 

Definition. The cross WOL of signals f  and g  for the 
parameter matrix  00 ,,,,, udcbaA   is defined as follows  
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If gf   then    utWOLutWOL fff ,,,   is called the auto 

WOL. That is,  
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Both the cross WOL and auto WOL are referred to be as 
simple as the WOL and are simplified as the WOL of signal 
 tf  and denoted by  .,utWOL f  

The relationship between WL and WOL is easy to be 
verified; when the parameter A is reduced to 
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 ,0,0,,,, dcbaA   the WOL is reduced to the WL 

     .,,0,0,,,, utWLutWOL f
dcba

f                       (4) 

In this sense, the WOL is the generalization of the WL.  

Obviously, when the parameter matrix has the special form 
 ,0,0,0,1,1,0 A  the WOL is reduced to the WVD 

    .,,0,0,0,1,1,0 utWutWOLf                          (5) 

From (4) and (5) we can see that the WOL is a 
generalization of the WL and WVD.  

IV. THE PROPERTIES OF THE WOL 

In this Section, the new properties of the WOL, such as 
translation, modulation, multiplied signal, and instantaneous 
frequency are investigated. Besides, the section illustrates the 
uncertainty principle of the WOL. 

A. The Properties of the WOL 

1) Translation property: The translation property of WOL 
for     tftf '  has the form 

   .,,'  autWOLutWOL ff   

Proof. From definition of the WOL (3) we have 
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Proof of this property is completed. 

2) Modulation property: For     ,' 12 tiuetftf   then 
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3) Multiplied signal: For      ,thtgtf   
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4) Instantaneous frequency: For any signal 
     tietftf   

      .,,  
 duutWOLduutuWOLtu ffi  

Here, the denominator of above equation is time marginal 
property [4], so the  tui  can be rewritten as follows 
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B. The Uncertainty Principle of the WOL 

The uncertainty principle [8], [15], [16] plays an important 
role in physics and communication. It is helpful for analyzing 
the characteristic of a signal in the time or frequency domain. 
Here the uncertainty principle of the WOL is obtained. 

First, two important equalities are provided 
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Let ,2n  then the uncertainty principle of the WOL is 
obtained as below 
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This shows that  utWOL f ,  cannot be sharply localized. 

V. CONCLUSION 

Based on the OLCT and the classical WVD theory, this 
paper proposes a novel kind of definition of WVD in the OLCT 
domain, namely WOL. Various properties of the WOL, 
including translation, modulation and multiplied signal are 
derived in details. Furthermore, a new approach to calculate the 
instantaneous frequency is presented. In addition, the 
uncertainty principle of the WOL is shown. The applications of 
the WOL in the nonstationary signal processing will be studied 
in our future papers. 
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