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Abstract—We introduce the technically simple approach to 
determining the abrupt change of the unknown mathematical 
expectation and dispersion of the low-frequency fast-fluctuating 
Gaussian random process against white noise. For this purpose, 
we determine new approximations of the decision statistics for 
various hypotheses, we carry out their maximization in terms of 
unknown parameters, and we develop the block diagrams for the 
corresponding detectors and measurers in the form of the 
comparatively simple single-channel units. For the analytical 
analysis of the performance of the synthesized algorithms, the 
asymptotically exact expressions for their characteristics, 
specifically – type I and type II error probabilities (when an 
abrupt change point is detected) and conditional biases and 
variances of the estimates (when measuring the parameters of the 
analyzed random process), are obtained by means of local 
Markov approximation method. The experimental testing of the 
presented theoretical results is implemented by the methods of 
statistical computer simulation. 

Keywords-random process; abrupt change; detection; 
estimation; maximum likelihood method; parametrical prior 
uncertainty; local Markov approximation method; statistical 
computer simulation 

I.  INTRODUCTION 

The problem of the statistical analysis of the abrupt change 
(i.e., instantaneous jumping at the some time) of the 
mathematical expectation and dispersion of the random process 
is of a great importance in the fields of technical and medical 
diagnostics, the control theory, in data processing, etc. [1-3, 
etc.]. In certain studies, the statement of this problem is 
accompanied by the assumption that the observable data 
realization has a normal distribution. As a rule, the additional 
restrictions are also imposed. Thus, in [1] it is presupposed that 
the processed samples are statistically independent, while [2, 3] 
are concerned with the autoregressive models of the 
information process mainly, etc. Besides, in many cases the 
synthesis of detection and estimation algorithms for the abrupt 
change is usually conducted in the conditions of complete prior 
certainty regarding spurious parameters of the analyzed random 
process. In the relative few papers dealing with the statistical 
analysis of the abrupt change of Gaussian processes with 
unknown parameters, there are described comparatively 

complex iterative algorithms only operable in case of the very 
high signal-to-noise ratios (SNRs) [1, etc.]. 

In the present study, we consider the problem of the 
analysis of the abrupt change in the power parameters of the 
random process, presupposing that its fluctuations are fast 
(strong condition) and that its spectral density is approximately 
uniform within the specified bandwidth (weak condition). In 
terms of the technique introduced in [4], we suggest a 
technically simple approach to determining the moment of the 
stepwise change in the unknown mathematical expectation and 
dispersion of the band Gaussian random process and to their 
measurement before and after jumping. And we illustrate how 
to effectively overcome the parametrical prior uncertainty 
under arbitrary SNRs. 

II. ABRUPT CHANGE OF THE DISPERSION OF THE RANDOM 

PROCESS 

At first, we consider the problem of the abrupt change of 
the unknown dispersion of the random process at the unknown 
point in time. We presuppose that other parameters of the 
random process are a priori known. And we write down such 
process analytically as follows 

         ttat    0121 . 

The designations are:   0 t , if 0t , and   1 t , if 

0t  – Heaviside function, 0  – the moment of possible 
stepwise change, a – mathematical expectation of the process 
 t , 1 , 2  – mean square deviations of the process  t  

under 0t  and 0t , accordingly, and  t  – stationary 
centered Gaussian random process possessing spectral density 
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Here Ω is the bandwidth of the process  t . 
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We believe that the process (1) is observed against additive 
Gaussian white noise  tn  with one-sided spectral density 0N . 
As a result, the mix 

      tnttx    Tt ,0  

Can now be observed. The fluctuations of the process  t  
are now considered as “fast”, so the following condition is 
satisfied 

 14minmin  T  

where  00min ,min  TT . With the observable realization 
(3), it is necessary to detect the abrupt change point and to 
estimate the parameters  210 , , 1 , 2 . 

For the synthesis of the detection algorithm of the process 
 t  dispersion stepwise change, we separate the two possible 

cases (two hypotheses): 1) 21  , i.e. jumping is absent ( 0H  

hypothesis); 2) 21   ( 1H  hypothesis). The problem of the 
specified hypotheses testing is solved by means of the 
maximum likelihood method. For this purpose, with the results 
of the previous studies [4-6] in mind, we write down the 
expressions for the decision statistics (logarithms of the 
functionals of likelihood ratio) for hypotheses 0H , 1H  against 

alternative H:    tntx   as 

 0H :
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Here      



 tdtthtxty    is the output signal of the 

filter with the transfer function  H , satisfying the condition 

     2
2

GH  (2), and λ, 1d , 2d  are current values of 

the parameters 0 ,  2
101 2d ,  2

202 2d , 
accordingly. The choice is made in favor of the presence of the 
abrupt change, if [4, 6, 7] 


 

    cdLddL
ddd
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

10211
,, , 12121

max,,max  

where c is the threshold, calculated according to the specified 
optimality criterion. 

The maximization of the functionals (5) with respect to 
variables 1d , 2d  can be performed analytically. As a result, the 
maximum likelihood algorithm (6) for detection of the abrupt 
change in the unknown dispersion of the low-frequency 
Gaussian random process takes the form of 

  
  cM

H

H

0

1

21,
max







 

            2123 lnln MMTMMM , 

and it is an invariant to the spectral density of the white noise. 
In Eq. (7) it is designated as: 
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The decision detection rule (7) can be reduced to a simpler 
form processing the centered realization     atxtx ~ instead 

of the initial realization of the observable data  tx  (1). Then, 

we can write down the functionals  1M ,  2M , 3M  in Eq. 
(7) as follows 
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where      



 tdtthtxty   ~~ , and  th  is determined in the 

same way as in Eq. (5). 

The expressions (7), (8) define the structure of the 
maximum likelihood detector of the abrupt change in the 
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unknown dispersion of the Gaussian random process. One of its 
possible implementation is shown in the form of block diagram 
selected by dashed line in Figure 1. Here the designations are 
as follows: 1 is the switch that is open for time  T,0 ; 2 is the 

substractor; 3 is a filter with transfer function   TH  ; 4 is 
the squarer; 5 is an integrator; 6 is a delay line for the period T; 
7 is the ramp generator T ; 8 is the divider; 9 is the 
logarithmic amplifier; 10 is the multiplier; 11 is the peak 
detector; 12 is the threshold device, which is carrying out 
comparison of an output signal of the peak detector with a 
threshold c within the interval  21,  and deciding upon the 
presence of the abrupt change in the dispersion of random 
process, if the threshold is exceeded, or deciding upon the 
absence of such abrupt change, if the threshold is not exceeded. 

 
FIGURE I. BLOCK DIAGRAM OF THE DETECTOR/MEASURER OF 

THE ABRUPT CHANGE IN THE DISPERSION OF THE 
GAUSSIAN RANDOM PROCESS. 

Let us suppose now that abrupt change in the dispersion of 
the random process  t  is realized with probability 1 within 

the interval  21, . And it is necessary to measure the 

change-point time 0  jointly with parameters 1 , 2 . Using 

Eq. (5), for the maximum likelihood estimates m , m1 , m2  

of the unknown values  0 , 1 , 2  we obtain 
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2
2 .  

where  40NEN  is mean power of the noise  tn  within 

bandwidth of the process  t , and  1M ,  2M , 3M  are 
determined according to Eq. (8). 

The measurer (10) can be implemented in the form of the 
block diagram shown in Figure 1, from which the peak detector 
11 and the threshold device 12 should be excluded. Other 
designations are the following: 13 is the retriever of the 
location of the input signal greatest maximum (extremator) 
within the interval  21, ; 14 is the nonlinear element with 

characteristic    xxf ,0max ; 15 is the sampling device 
forming to its output the input signal sample at the instant time 
determined by the value m  as output signal. 

In order to determine the efficiency of the synthesized 
detection (7) and estimation (9) algorithms, we found the 
asymptotically exact (with increasing min  (4)) expressions for 
their characteristics such as type I and II error probabilities (for 
algorithm (7)) and conditional biases and variances of estimates 
(for algorithm (9)), using a local Markov approximation 
method [8, 9]. We also carried out experimental tests for the 
performance of the detector (7) and the measurer (9) by 
methods of statistical computer simulation. As a result, we 
established that the detector (7) and the measurer (9) are 
operable, and theoretical formulas for type I and II error 
probabilities and conditional biases and variances of the 
decided estimates well conform to corresponding experimental 
data in a wide range of parameter values of the process  t . 
And we showed that processing algorithms (7), (9) can be used 
in the analysis of many widespread non-Gaussian random 
processes without appreciable loss in accuracy. 

III. ABRUPT CHANGE IN THE MATHEMATICAL 

EXPECTATION AND THE DISPERSION OF THE RANDOM PROCESS 

We now consider a case, when both the dispersion and the 
mathematical expectation of the process  t  are unknown, and 

they can abruptly change at the time 0 , so 

            tttaaat     01210010201 

Here 01a , 02a  are mathematical expectations of the process 

 t  under 0t  and 0t , accordingly, and other 
designations coincide with the ones used in Eq. (1). Subject to 
Eq. (4), with realization (3), (10) it is necessary to detect the 
change-point time and to estimate the parameters 

 210 , , 01a , 02a , 1 , 2 . 

As in section 2, while synthesizing the detection algorithm 
of the abrupt change in power parameters of the process  t  

we separate the two possible cases: 1) 0201 aa  , 21  , i.e. 

abrupt change is absent ( 0H  hypothesis); 2) 0201 aa   and/or 

21   ( 1H  hypothesis). We will solve the problem of the 
specified hypothesis testing by means of the maximum 
likelihood method and, following [5, 6], we will write down 
expressions for the logarithms of the functionals of likelihood 
ratio under hypotheses 0H  and 1H  against alternative H: 

   tntx   in the form of 

Advances in Intelligent Systems Research, volume 132

166



 
FIGURE II. BLOCK DIAGRAM OF THE DETECTOR/MEASURER OF 

THE ABRUPT CHANGE IN THE MATHEMATICAL 
EXPECTATION AND THE DISPERSION OF THE GAUSSIAN 

RANDOM PROCESS. 
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Here  ty , λ, 1d , 2d  are determined in the same way as in 

Eq. (5), and 1a , 2a  are current values of the parameters 01a , 

02a , accordingly. Similarly to Eq. (6), the decision upon the 
presence of the abrupt change is made, if the following 
inequality is satisfied 
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where c is the threshold, calculated according to the specified 
optimality criterion. 

Maximization with respect to variables 1a , 2a , 1d , 2d  in 
Eq. (12) can be performed analytically. As a result, the 
maximum likelihood detection algorithm of the abrupt change 
in unknown mathematical expectation and/or dispersion of the 
Gaussian random process takes the form of 
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The detector (13) can be implemented in the form of the 
block diagram selected in Figure 2 by dashed line. Here 
designations are the same as in Figure 1. 

Let us suppose now that abrupt change in the mathematical 
expectation and/or the dispersion of the random process  t  is 

realized with probability 1 within the interval  21, . And it 

is necessary to measure the change-point time 0  jointly with 

the parameters 01a , 02a , 1 , 2 . Using Eq. (11), for the 

maximum likelihood estimates m , ma1 , ma2 , m1 , m2  of 

the unknown values  0 , 01a , 02a , 1 , 2  we obtain 
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where NE  and  1M ,  2M , 3M  are determined from Eqs. 
(9) and (14), correspondently. 

The measurer (15) can be implemented in the form of the 
block diagram shown in Figure 2, from which the peak detector 
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11 and the threshold device 12 should be excluded. Other 
designations coincide with the ones specified in Figure 1. 

In order to determine the efficiency of the synthesized 
detection (13) and estimation (15) algorithms, we found the 
asymptotically exact (with increasing min  (4)) expressions for 
their characteristics, such as type I and II error probabilities (for 
algorithm (13)) and conditional biases and variances of 
estimates (for algorithm (15)), using a local Markov 
approximation method [8, 9]. We carried out experimental 
testing of the performance of the detector (13) and the measurer 
(15) by means of statistical computer simulation. As a result, 
we established that the detector (13) and the measurer (15) are 
operable, and theoretical formulas for type I and II error 
probabilities, as well as the conditional biases and variances of 
the decided estimates well conform to the corresponding 
experimental data in a wide range of parameter values of the 
process  t . Also, we showed that algorithms (13), (15) can 
be used in the analysis of many widespread non-Gaussian 
random processes without appreciable loss in accuracy. 

IV. CONCLUSION 

In order to detect the abrupt change point in the fast-
fluctuating Gaussian process and to measure its jumping and 
constant parameters, the maximum likelihood method can be 
effectively applied. This approach allows us to obtain the 
algorithms for determining abrupt change in the unknown 
power parameters of the random process, while neglecting the 
values of the order of the correlation time of the analyzed 
random process. These algorithms are technically the simplest 
ones in comparison with the common analogues. Additional 
researches show that the detectors and the measurers 
synthesized by means of the introduced approach can also be 
used in the analysis of the abrupt change of the statistical 
characteristics of the non-Gaussian low-frequency random 
processes and bring no great losses in performance. The 
obtained results are proved by computer simulation. 
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