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Abstract—This work focuses on investigating the solutions for a 
generalized fractional diffusion equation. This equation presents 
space and time fractional derivatives, includes an absorbent term 
and a linear external force, takes a time-dependent diffusion 
coefficient into account, and subjects to the natural boundaries 
and the general initial condition. We obtain explicit analytical 
expressions in terms of the Fox H functions for the probability 
distribution. In addition, we analyze the first passage time and 
the second movement distribution for the case characterized by 
the absence of absorbent term and external force for a semi-
infinite interval with absorbing boundary condition.  

Keywords-anomalous diffusion; fractional diffusion; green 
function; fox function 

I.  INTRODUCTION 

Anomalous diffusion is one of the most ubiquitous 
phenomena in nature [1]. It is present in a wide variety of 
physical situations. For instance, surface growth, transport of 
fluid in porous media [2], two-dimensional rotating flow [3], 
subrecoil laser cooling [4], diffusion on fractals [5], or even in 
multidisciplinary areas such as econophysics [6-8]. The 
properties concerning these equations have also been 
investigated. For instance, in [9] boundary values problems for 
fractional diffusion equations are studied, in [10] a fractional 
Fokker-Planck equation is derived from a generalized master 
equation, in [11] the behavior of fractional diffusion at the 
origin is analyzed and a connection between the Fox H 
functions and the fractional diffusion equations was 
investigated in [12]. Also a generalization of Brownian motion 
to multidimensional anomalous diffusion is considered by 
using fractional differential equation in [13, 14]. Analytical 
solution of fractional Navier–Stokes equation is investigated  
by using modified Laplace decomposition method in [15]. In 
[16] the maximum principles for solutions of the linear 
fractional diffusion equations are derived, in [17], the regional 
controllability for the Riemann–Liouville time fractional 
diffusion systems is analysed, in [18] a harmonic analysis of 
random fractional diffusion-wave equations is done, in [19] the 
Cauchy problem for fractional diffusion equations is discussed, 
and second order accuracy finite difference methods for space-
fractional partial differential equations are proposed in [20]. 
The space-time fractional nonlinear Schrödinger equation is 
solved by mean of on the fractional Riccati expansion method 
[21]. Analytical solution of time-fractional Drinfeld-Sokolov-
Wilson system is obtained by using residual power series 
method [22]. 

In this direction, we dedicate this work to investigate a 
fractional diffusion equation which employs space and time 
fractional derivatives by taking a time-dependent diffusion 
coefficient, an absorbent or sources term and an external force 
into account. More precisely, we focus our attention on the 
following equation  
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With 0 1 „ , 0 2 „ , where D(t) is a time dependent 
diffusion coefficient, F(x) is an external force, a(t) is a time 
dependent absorbent term, which may be related to a reaction 
diffusion process. Here we use the Caputo operator for the 
fractional derivative with respect to time t and the Riesz-Weyl 
operator for the fractional derivative with respect to spatial x 
[23] and we work with the positive spatial variable x. Later on, 
we will extend the results to the entire real x-axis by the use of 

symmetry (in other words, we are working with / | |x   ). The 
presence of the reaction term like the one presents in the above 
equation may be useful to investigate several situations by 
choosing an appropriated a(t). For example, catalytic processes 
in regular, heterogeneous, or disordered systems [24, 25]. 

The plan of this work is to start by considering (1) without 
external force and absorbent term. Then we consider (1) in the 
presence of the absorbent term 1( ) / ( )a t at    without 
external force. After that we incorporate the external force 

( )F x x K  in our analysis. In all the above cases, (1) satisfies 
to the generic initial condition ( , 0) ( )x x   ( ( )x  is a given 
function), and the natural boundary condition ( , ) 0t   . 
The remainder of this paper goes as follow. In Sec.2, we obtain 
the exact solutions for the previous cases. In Sec.3, we present 
our conclusions. 

II. SOLUTION FOR THE FRACTIONAL DIFFUSION EQUATION 

Let us start our analysis by considering (1) in the absence of 
the external force and the absorbent term. Thus (1) reads 
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Notice that for 1, 2   , (2) reduces to the usual diffusion 
equation taking memory effect into account, which can be 
obtained from a dichotomous random process [26]. By 
applying the Laplace and Fourier transforms, and employing 
Riesz representation for the spatial fractional derivatives, we 
may simplify (2), which is an integral order differential 
equation, to the following algebraic equation 

 1ˆ ˆˆ( , ) ( , 0) ( ) | | ( , ),s k s s k D s k k s          
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by the Green function method [27]. So we have 
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Applying the Fourier and Laplace transform in (4), we 
obtain the solution which is given by 
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where ˆ ( ,0)k  is the Fourier transform of the initial condition 

and  ( , )k tG  is the Green function of (2) in the Fourier-Laplace 
space. Applying the inverse of Laplace transform, we obtain 

 
,1( , ) ( | | ),k t E D k t  

 


 G  

where 
, ( )E x 

 is the Mittag-Leffler function. In order to 

perform the inverse of Fourier transform, we express  ( , )k tG  in 

the terms of Fox function, i.e. (1) ( )

(1) ( )

( , (1)), ,( , ( ))

( , (1)), ,( , ( ))[ | ]p

q

a A a A pm n
p q b B b B qH x 
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So (7) can be written as follows 
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This solution recovers the usual one for ( , ) (2,1)    and for 
2  it extends the results found in [29]. Note that the Mellin 

transform of the Fourier transform of f(x) is an even function 
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We first evaluate the Mellin transform of (8) to find the 
Mellin transform of ( , )x tG . The Mellin transform then only 
need to be inverted to find Fourier inverse, ( , )x tG . To find the 
Mellin transform of (8), we note the Mellin transform of a Fox 
function is given by [30] 
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when the following conditions are met 
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By applying this procedure, we obtain (see Figure I) 
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
FIGURE I.  THE BEHAVIOR OF GREEN FUNCTION ( , )x tG  IN (15) IS 

ILLUSTRATED BY CONSIDERING 1/2 ( ) ( , )Dt x t     G   

VERSUS 
1/

| |

2( )

x

Dt  
 FOR TYPICAL VALUES OF    AND   

Advances in Intelligent Systems Research, volume 132

181



In Figure I, we show the behavior of the above equation for 
typical values of μ, γ and α. Note that the Green function 
obtained here leads to an anomalous spreading of the initial 
condition due to the presence of the spatial and time fractional 
derivatives and a memory effect. This feature can be verified, 
for simplicity, by analyzing the second movement of (15) for 
particular case μ=2. For this case, it is given by 

 2

0

2
( ) ( )

( 1)

t
x dt t t D t


    

    

For the initial condition ( ,0) ( )x x   and the diffusion 
coefficient 1( ) / ( )D t Dt   . Figure II shows the behavior of 
<x2> versus t, which illustrates how (16) evolves on the time by 
considering, for simplicity, D=1 for typical values of γ and α. 

FIGURE II.   THE BEHAVIOR OF < X2> VERSUS T 

In Figure II, we can see for small time <x2> is dominated by 
the initial distance, and for large time the rate of <x2> is less 
than that of the intermediate time. This behaviors are verified in 
turbulent processes [31]. At this point, by submitting (15) and 
the initial condition  ( ,0) ( )x x    into (4), we can get the 
solution for (2), which is given by 
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The result obtained here can be rated to several results 
presented in [10, 12, 32]. 

In this direction, by using the previous result and the 
method of images [27], we may find the solution when the 
boundary condition is defined in a semi-infinity interval, 
i.e. (0, ) ( , ) 0t t    . In particular, the solution taking this 
boundary condition into account, in the absence of the 
absorbent term and external force, is given by 
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For the initial condition ( ,0) ( )x x    . This result extends 
results found in [33, 34] and the first passage time distribution 
for the system governed by this case, using the definition 

0
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Which has the asymptotic behavior 1 ( )/( ) ~ 1/t t    F  for 
large time. In Figure III, the behavior of the first passage time 
distribution ( )tF  in (19) is illustrated by considering 

2[ / (2( ))] ( )t t    F  versus 1// (2( ) )Dt    , for typical 
values of γ + α and μ. 

 
FIGURE III.  THE BEHAVIOR OF THE FIRST PASSAGE TIME 

DISTRIBUTION ( )tF  IN (19) 

Let us go back to (1) and consider 1( ) / ( )a t at    . Then, 
(1) reads 

1

0 0
( , ) ( ) ( , ) ( ) ( , ).
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t ta
x t dt D t t x t dt t t x t

t x

 
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By using the Laplace and Fourier transforms, at the same 
time employing Riesz representation for the spatial fractional 
derivatives, we have 

 1ˆ ˆ ˆˆ( , ) ( ,0) ( ) | | ( , ) ( ) ( , ),s k s s k D s k k s a s k s           
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where ( )D s Ds  , ( )a s as   and ˆ ( ,0)k  is the Fourier 
transform of the initial condition. The solution of this equation, 
for simplicity, by considering ˆ ( ,0) 1k  , is given by 


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ˆ ( , ) .
( ) | | ( )

s
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Then, we employ the procedure presented in [36], where an 
explanation of how to get the series expansion in terms of Fox 
H function can be found. By applying this procedure, we obtain 


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Applying the inverse of Laplace transform on the above 
equation, we can obtain 
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Then, following the same procedure as in the first case to 
find the Fourier inverse of ˆ ( , )k t  , we have 
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Note that the result got here for a bi-fractional reaction 
diffusion equation recovers the solution for the usual one. 

Let us incorporate the external force ( )F x xK   into the 
previous calculations. For this case, (1) reads 
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Following the procedure employed above to the case 
without external forces, we also use the Fourier and Laplace 
transforms to simplify our study. By using these integral 
transforms, (26) can be simplified to 


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By applying the inverse of Laplace transform on (27) as 
above, we can obtain 
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Here, we used the property of the Laplace transform of 
convolution formula, i.e. [ ]f g f g  L , where 
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In order to get the solution, we need to get the inverse of 
Fourier transform of  ( , )k tG . Therefore, we only need to 
perform the inverse of Fourier transform on 
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The above equation in the absence of absorbent term  
recovers the results found in [37], i.e. a(t)=0. Note that the 
solution of (26) in the absence of absorbent term is a stationary 
one given in terms of the Lévy distribution. This feature is a 
characteristic of the presence of the spatial derivatives in the 
diffusion equation which changes the probability for a jump 
length (see [38] and references therein). 

III. SUMMARY AND CONCLUSIONS 

We have worked out a generalized diffusion equation 
which presents space and time fractional derivatives and takes 
an absorbent term and the external force into account. We have 
first analyzed the case characterized by the absence of external 
forces and the absorbent term. For this case, we have obtained 
the exact solution and expressed it in terms of a Fox function. 
Furthermore, we have considered the second moment for this 
case and obtained the first passage time distribution by taking 
the boundary conditions (0, ) ( , ) 0t t     into account. Then 
we consider (2) with an absorbent term a(t)=atβ-1/ Γ(β). 
Subsequently, we have incorporated the external force 

( )F x xK  to the previous situations in which the absorbent 
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term is present. For the third case, we have also discussed the 
stationary solution which emerges from α(t)=0. In this sense, 
the present results may be considered as an extension to a 
broad context of the analysis for the time fractional diffusion 
equations. Finally, we expect that the results obtained here may 
be useful to the discussion of the anomalous diffusion systems 
where fractional diffusion equations play an important role. 
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