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Abstract—Skalmierski's theory of stretched violin plates [6] is 
briefly described. In the course of developing a computer model 
for the theory, it was necessary to address the geometry of violin 
plates. Following Skalmierski's theory, various methods of 
inducing tensions into violin plates were considered. One of the 
most obvious, assumes that violin ribs are bent “cold”, and 
therefore, preserve their elastic properties. The differential 
equations governing the large deflection of a bent beam were 
solved [4] and the resulting deflection curves were scaled up to 
match the overall dimensions of the original Stradivari violin 
from 1716, known as “Messiah” [2]. Three curves corresponding 
to the tail, middle and neck parts of the body have been 
assembled into half of the violin plate outline. The “Messiah” 
plate outline was sampled and digitized. The two curves were 
then compared, using various statistical tools. It was found that 
these two shapes were strikingly similar. The similarity is even 
greater, if the regions of the side blocks are omitted. The results 
obtained strongly support the hypothesis that Stradivari bent his 
violins' ribs “cold”, which is in contradiction to the commonly 
used method in modem violin building. This confirms 
Skalmierski's theory, since elastically bent ribs produce 
counteracting forces to the compression forces of the strings. It 
also offers an explanation of the violin's particular shape - it is 
the only possible shape yielded by elastically bent ribs. 
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I. SYMBOLS AND DEFINITIONS 

PA, PB, Q1 Q2, etc. forces 

MA, MB   bending moments 

A,A, A, B, A, B,  angles 

LA, LB,   length of bar parts 

l1, l2, l3, etc.  length of bar axis 

E   Young’s modules of bar 

I   bar cross-section moment of inertia 

p, pA, pB, etc.  moduli of deflection 

k, kA, kB, etc.  elastic constants 

Incomplete Legendre-Jacobi elliptic integrals of the first 
and second kind: 



Complete Legendre-Jacobi elliptic integrals of the first and 
second kind: 



Auxaliary functions defined in terms of elliptic integrals: 

(p, ) = 2E(p, ) – 2E(p) – F(p, ) + K(p) 

and 

(p, ) = 2E(p, ) – F(p, ) 

II. INTRODUCTION 

A. Theory of Stretched Violin Plates 

The theory of stretched violin plates [6] attempts to explain 
the “mystery” of old Italian violins by means of the mechanical 
properties of the violin body. It claims that the present-day 
technology of violin making is incorrect as it does not ensure a 
counter-tension of the sound board for the compression forces 
of the strings. Therefore, there must be tensions, artificially 
induced, to make the upper plate of a violin body resemble a 
drum skin, i.e. the upper plate should be stretched by the side 
panels and by the bottom plate. 

The acoustical implications of a body constructed in this 
way are easy to predict, the entire violin spectrum would be 
shifted to the right. In order to comply with the results of 
Backhaus' experimental studies [1] on the spectra of violins 
manufactured by various luthiers, the magnitude of the forces 
should be selected in such a way that the main formant of the 
violin falls into the region of 4 kHz. As a result, the perceived 
sound would be brighter and louder due to the physiological 
(subjective) amplification of the human aural system as 
described by the Fletcher-Munson equal-loudness curves. 

When investigating possible methods of inducing tensions 
into violin plates, careful consideration must be given to the 
dampening effects which occur in the violin body. The one 
resulting from the compression forces of strings is, 
unfortunately, inevitable. The possible methods of stretching 
the upper plate should minimize any additional dampening or, 
preferably, they should diminish that produced by the strings. 
Thus, for example, a tight soundpost would not be a good way 
to accomplish the objective proposed by the theory. One of the 
most obvious methods of plate stretching assumes that violin 
ribs are bent “cold”, so that they preserve their elastic 
properties. 
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B. Ribs Bending 

A hypothesis that violin ribs were bent “cold” leads 
necessarily to the question of how this could have been done. 
There are, obviously, many answers to this question. One of the 
possible methods is presented in Figure I. Two clamps applied 
to the side corners, and one applied to the tail and neck comers 
would yield the necessary compressing forces. The above 
system can be simplified by replacing the three pairs of forces 
by just two: horizontal and vertical. These two methods 
of bending violin ribs are mechanically equivalent. To simplify 
the mathematics involved, it is assumed that Q is perpendicular 
to the axes l, as shown in Figure II. Such a system will now be 
investigated. 

 

FIGURE I.  VIOLINS RIBS BENT BY THREE PAIRS FORCES. 

 

FIGURE II.  VIOLINS RIBS BENT BY TWO PAIRS FORCES. 

III. DISTRIBUTION OF FORCES THROUGH VIOLIN RIBS 

The two pairs of forces P and Q will distribute through the 
ribs as shown in Figure III. The thick solid arrows represent 
external forces, thin solid arrows represent distributed forces 
and bending moments, and dashed arrows represent reactions. 
Figure III shows only one half of the violin outline; the 
remaining half is identical due to the violin’s symmetry. 

 

FIGURE III.  DISTRIBUTION OF BENDING FORCES ALONG VIOLIN 
RIBS. 

 

FIGURE IV.  EQUILIBRIUM OF AN ELASTIC BAR SUBJECT TO 
THREE FORCES. 

It can be seen in Figure III that the half of a violin outline 
OABO' is composed of three curves: OA, BO' and ACB. The 
first two are large deflections of a beam-column subject to an 
axial load, the third one is a large deflection of an elastic bar 
subject to three forces (see Figure IV). It seems that the 
contribution of the bending moments MA and MB can be 
neglected without losing much accuracy in the shape of the 
deflection curves being sought. Two such systems will now be 
examined. 

IV. DIFFERENTIAL EQUATIONS SOLUTION 

The problem of the large deflection of a beam-column 
subject to an axial load has been solved by Frisch-Fay [3] and 
is given by the equations: 

  

where 

     

Constant k and modulus p are defined in terms of P, E, l 
and slope  at the ends of the beam-column. The C-shaped 
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middle part of a violin outline results from the bending of an 
elastic bar by three forces (bending moments at the ends are 
neglected) as shown in Figure IV. The large deflection solution 
for such a system is proposed in [4] and is given by two sets 
of parametric equations: 

  

for  

 

for 

describing the AC and BC parts of the bar (see Figure IV), 
respectively. Combination of equations (2) and (3) represents 
the deflection curve for the entire bar ACB. These equations, 
however, contain nine unknown variables: kA, kB, A, B, A, B, 
pA, pB and l. For obvious reasons, there is no closed-form 
solution for the above set of simultaneous equations. They have 
been, however, solved numerically with the aid of a computer. 

V. PREDICTION OF AN OUTLINE 

The outline of the real Stradivarius violin from 1716, 
known as “Messiah” [2] has been sampled, digitized and 
measured. The numerical solution to (1) has then been scaled 
up to match the real dimensions of the “Messiah” violin [5]. 
The resulting curves represent half of the tail and neck parts 
of the outline. They are plotted in Figure V and Figure VI, in 
the suitable system of the coordinates. 

 

FIGURE V.  PREDICTED TAIL PART OF A VIOLIN OUTLINE. 

 

FIGURE VI.  PREDICTED NECK PART OF A VIOLIN OUTLINE. 

Similarly, the numerical solutions to (2) and (3) have been 
found. By scaling up by the measurements of the “Messiah” 
violin, the middle part of the violin outline has been determined. 
It is shown in the appropriate system of axes in Figure VII. 

 

FIGURE VII.  PREDICTED MIDDLE PART OF A VIOLIN OUTLINE. 

The three curves described above have been assembled into 
half of a violin shape. Due to the symmetry of a violin, the 
entire outline can be now plotted (see Figure VIII). 

 

FIGURE VIII.  PREDICTED OUTLINE OF STRADIVARI “MESSIAH” 

VI. STATISTICAL ANALYSIS AND COMPARISON 

The outline of the real Stradivarius’ instrument is plotted 
against the theoretically obtained curve in Figure IX. As can be 
seen, the similarity of these two shapes is striking. It is even 
greater, if the regions of the side blocks are omitted (see Figure 
XI) due to the fact that the shape of ribs in these regions 
depends solely on the carved shape of the side blocks which 
can be almost arbitrarily shaped by a luthier. Therefore, the 
concept of elastic ribs does not hold in the vicinity of the 
blocks. In addition, the corner blocks to which the ribs are 
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affixed, yielded some bending moments which had been 
neglected in the prediction. 

 

FIGURE IX.  PREDICTED OUTLINE (SOLID LINE) PLOTTED AGAINST 
STRADIVARI’S VIOLIN (DASHED LINE) WITH THE SIDE 

BLOCK REGIONS INCLUDED. 

 

FIGURE X.  REGRESSION LINE (SOLIDLINE) PLOTTED AGAINST 
THE SCATTERDIAGRAM (DASHED LINE) WITH THESIDE 

BLOCK REGIONS INCLUDED. 

 

FIGURE XI.  PREDICTED OUTLINE (SOLID LINE) PLOTTED AGAINST 
STRADIVARI’S VIOLIN (DASHED LINE) WITH THE SIDE 

BLOCK REGIONS EXCLUDED. 

 

FIGURE XII.  REGRESSION LINE (SOLIDLINE) PLOTTED AGAINST 
THE SCATTERDIAGRAM (DASHED LINE) WITH THE SIDE 

BLOCK REGIONS EXCLUDED. 

In both cases (side block regions included and side block 
regions excluded), the predicted and real curves were compared 
using various statistical tools, yielding the following results: 

TABLE I.  STATISTICAL COMPARISON OF THE REAL AND THE 
PREDICTED OUTLINES OF STRADIVARI’S “MESSIAH.” 

 Side block regions 
included 

Side blocks regions 
excluded 

Correlation 
Coefficient 

0.91 0.994 

Regression 
Line 

0.897x + 8.765 0.908x + 8.607 

Standard 
Error 

3.387 2.740 

The scatter diagrams plotted against the regression lines for 
these two cases are presented in Figure X and Figure XII. 

VII. CONCLUSION 

These results strongly support the hypothesis that Stradivari 
bent his violins’ ribs “cold” which, in turn, supports 
Skalmierski's theory, since such a method of shaping a violin 
outline produces the counteracting forces to the compression 
forces of the strings. It has been experimentally checked that 
maple ribs of practical thickness can be bent “cold” to the 
shape of a violin without breaking, provided that the entire ribs 
outline is composed of six components. 

Putting aside the question whether Stradivari indeed bent 
ribs of his violins in the described way, it should be noticed 
that there is such a possibility, and that this method would yield 
the desirable acoustical characteristics of a violin timbre as 
predicted by Skalmierski's theory. If, however, Stradivari or 
perhaps somebody before him, had used this method for 
making a violin, this would explain the violin's particular shape 
- it is the only possible shape of elastically bent ribs. Hence, 
many of the more or less poetic theories concerning the shape 
of the violin could be viewed as merely literary speculation, 
proving that reality can be more prosaic than it is believed to be 
which, needless to say, happens rather often. 
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