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Abstract—This paper studies the existence of periodic solutions of 
autonomous multi- parameter perturbation system by using 
Liapunov second method when the critical point of the plane 
autonomous system is the real center. We obtain a necessary 
condition and a sufficient condition which extend those in 
references. An example is provided to illustrate the application of 
the results.  
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I.  INTRODUCTION  

Many physical, biological and economic problems can be 
attributed to the differential equation model with parameters. In 
general, when the parameter value changes, the motion 
properties of the differential system will change. Only when the 
parameter is sufficiently small, it is possible to keep the 
properties of the original motion. In particular, the emergence 
and disappearance of periodic solutions is a problem that has 
been paid attention to in the bifurcation theory of dynamical 
systems and attracted the attention of many scholars(see. 
references etc.[1,2,3,4,5,6,7]) . It is common to discuss the 
periodic solutions of systems with one parameter or two 
parameters, but there are few studies on the periodic solutions 
of the systems with multiple parameters. This paper discusses 
the following autonomous perturbed systems with multiple 
parameters 
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Where 1 m   , 0( 1,2... )i i m   . There exists a 

first order continuous partial derivative for the function 

P ,Q , if  and ih . If 0i  , the system(1) can be regarded as 

the 
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Therefore the system(1) can be viewed as the system(2) 
after the m parameter perturbation. Suppose the point 

(0,0)O  is a unique critical point of the system(1), and is the 
real center. We set up an appropriate plane rectangular 
coordinate system, and take a point (0, )A a in the y positive 

half axis. Now, it is a given fact that there is a ( )T a -periodic 

orbit A  through the point A  for the system(2). Assume the 

equations of A  are  

( , )

( , )

x t a

y t a





 

                          (3) 

Let the point (0,0)O  is still the critical point of the 
system (1), but not the center. At the same time, let 

( , )F x y C  is the first integrals of the system(2), and 

define ( )iR a  
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II. MAIN RESULTS 

THEOREM 1: Let *

1,2...
max { }i

i m
 


  is sufficiently small. 

For the system (1), If there is a closed orbit near the A , then 

( )iR a =0. 

Proof: Using the system(1), we find the orbital derivative 
the function ( , )F x y   

(1) ( )x y x i i

dF
F x F y F P f

dt
      

 ( )y i iF Q h                   (4) 

Because ( , )F x y C  is the first integrals of the 
system(2), we obtain the 
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According to (4) and (5) , we have 
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Take the non tangent line segment L  (full long) 
containing point A  in the y positive half axis. It is clear that 
the L  is the non tangent line segment of the vector field 
( , )P Q . For the system(2), the trajectory starting from A will 

return to A after ( )T a . When 0t  , for the system(1) the 
trajectory starting from A is 
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According to the continuous dependence of solutions on 

initial data and parameters, if the *  is sufficiently small, then 
the system(1) trajectory starting from A will return to the y 

positive half axis after 
...1 2

( )
m

T a
  

. When the first 

intersection occur about the trajectory and the y positive half 
axis, the increase of the function ( , )F x y  is 
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Assume a  is the parameter. By According to the 
continuous dependence of solutions on initial data, taking a 
arbitrarily 0  , there is 1 0a  , 0   and 0 0   , so 

that when *
1 0,a a      ,we obtain  

1 2 ... 1( , ) ( , )
m

t a t a       

1 2 ... 1( , ) ( , )
m

t a t a       

1 2 ... 1( ) ( )
m

T a T a       

Where [0, 2 ( )]t T a .On the other hand, the function 

x i y iF f F h  is continuous. When the *  is sufficiently small 

and 1a  is close fully to a , we *
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we obtain also that *( )R a  is close fully to ( )R a . If 

( ) 0iR a  , then *
1( ) 0iR a  . That is when *0    , 

the system(1) trajectory starting from A can not be closed orbit. 
The proof of theorem 1 has been complete. 

THEOREM 2: Consider 0 0a  , 0( ) 0R a  , ( )R a  is 

smooth near 0a  and 0( ) 0R a  .Then, ,there exists a closed 

orbit of the system(1) near the A  when the *  is sufficiently 

small. 

Proof: Owing to 0( ) 0R a  , 0( ) 0R a  , ( , )t a  and 

( , )t a  are smooth, ( )R a  can not reach to the extreme 

value. There is 1 , 0    for arbitrarily 0  , we obtain 

0 1 0 1( ) ( ) 0R a R a      as long as 10      . By the 

continuous dependence of solutions on parameters, if 
*

0  , then * *
0 1 0 1( ) ( ) 0R a R a     . According to the 

continuous dependence of solutions on initial data and the 
intermediate value theorem of continuous function, there 
exists 

1 0 1 0 1( , )a a a    0 0( , )a a     
we get 

*
1( ) 0R a  . That means the system(1) orbit starting from the 

point 1(0, )a  in the interval 0 0( , )a a    of  the y axis 

is the 
1 2 ... 1( )

m
T a   - periodic orbit. If 1  is sufficiently small, 

According to the continuous dependence of solutions on initial 
data and parameters, the periodic orbit must be located within 

the neighborhood of A . The proof of theorem 2 has been 

complete. 

III. EXAMPLE 

Consider the next system(9), where 1i  , 
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Let 0  , the first integrals of the system(9) is  

( , ) ln(1 ) ln(1 )F x y x x y y C           (10) 

The determining functions of periodic solution is 

2( ) 2 2 2
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Convert the expression (11) into a curve integral 
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The integral curve ( )a  is ( , ) (0, )F x y F a , and its 
direction is counterclockwise. By the Green formula, we 
obtain  

2 2

( )

( ) (1 ( ))
S a

R a x y dxdy                      (13) 

Where ( )S a  is the area enclosed by ( )a , assuming 
*( ) 0R a   and a  is sufficiently small, it is clear that 

( ) 0R a   no matter what a  is big or small. So we obtain 
*( ) 0R a  . Accordingly the system(9) have a periodic 

solution when   is sufficiently small. 
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