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Abstract—This study employed artificial neural network (ANN) 
to develop a regional forecasting model to predict atmospheric 
corrosion rates of carbon steels within general industrial zones 
and coastal industrial zones in Taiwan. Analyzed data are based 
on the results of metal atmospheric corrosion rates monitoring 
project executed by The Institute of Harbor & Marine 
Technology Center in Taiwan.  The result shows that sulfur 
dioxide deposition is the most significant factor to impact carbon 
steel corrosion rate in general industrial zones. However, for 
coastal industrial zones both sulfur dioxide deposition and 
chloride deposition are significant factors. The results reveal that 
the corrosion rates predicted by ANN have the most accurate 
performance. Furthermore, duplicating the extreme values of 
training set data of ANN can reduce the errors of corrosion rates’ 
prediction. As for corrosion classification category predictions, 
the results show that ANN can accurately predict the cases for 
coastal industrial zones, but there are up to 24% of misjudgments 
for cases of general industrial zones. 
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I.  INTRODUCTION 

Due to the fact that the metal atmospheric corrosion 
phenomenon is affected by many influencing parameters and 
the prediction about corrosion rates is very difficult, many 
studies have focused on either the effect of environmental 
variables on corrosion kinetics or the developments of metal 
corrosion rate prediction models. Feliu, Morcillo and Feliu Jr. 
collected worldwide atmospheric corrosion and environmental 
data from a comprehensive literature survey to establish 
general corrosion damage functions for mild steel, zinc, copper 
and aluminum, in terms of simple meteorological and pollution 
parameters [1, 2]. The product of the chloride level and the 
temperature was found to be a very important determinant of 
mild steel, zinc and copper corrosion. Besides, the product of 
the SO2 level and the wetness time was highly relevant to mild 
steel corrosion. Tidblad and Kucera collected and analyzed 
atmospheric corrosion data of carbon steel, zinc, copper, 
limestone and paint coated steel from 16 test sites in Asia and 
Africa [3]. Three exposure periods include one, two and four 
years were presented. It is found that SO2 and acid rain are the 
most important factors for all materials. On the other hand, 
HNO3 shows correlation to corrosion of zinc and limestone. 
Sabah, Charles, Siddiqui, and Saleh employed regression 
analysis and additive models using median polish to 
investigated the atmospheric corrosions of various metals 

caused by the degrading effects of air pollutions in Oman [4]. 
Aluminum, brass, copper, epoxy, galvanized, mild steel and 
stainless steel were used for investigation. The results showed 
that copper and mild steel were the most corrosive metals while 
stainless steel and epoxy were the least corrosive, and 
carbonates were the main component of corrosion, followed by 
chlorides and sulphates. 

Mendoza and Corvo used a stepwise multiple regression 
technique to develop an atmospheric corrosion model for steel 
in Cuba, including outdoor-indoor exposure based on the 
influence of time of wetness and pollutants[5]. Conditions of 
different atmospheres, such as rural, urban-industrial, and 
coastal, are investigated. The results indicated that the 
classification of corrosivity based on environmental data 
according to ISO 9223 is not in agreement with that based on 
the corrosion rates. The influence of time and quantity of rain is 
also found to be very important for characterizing differences 
between indoor and outdoor corrosion. 

Although there are many studies using traditional 
regression models to predict atmospheric corrosion rates of 
metals, and investigate the relation between corrosion factors 
and corrosion rates, but the results are not quite satisfied. 
Instead, artificial neural network (ANN) is a potential 
candidate to establish a metal corrosion prediction model, 
without regarding the complex mechanisms about physical 
diffusions and chemical reactions. 

Cai, Cottis, and Lyon used world-wide data compiled from 
42 references for the atmospheric corrosion of steel and zinc to 
develop an ANN model for corrosion rates prediction [6]. Input 
variables include temperature, time of wetness, exposure time, 
sulphur dioxide concentration and chloride concentration. The 
results showed that the ANN model is promising and accounts 
for about 70% of the variance of the atmospheric corrosion of 
steel and zinc. 

To predict the corrosion rate of carbon steel in the context 
of the Iberoamerican Corrosion Map (MICAT) Project, which 
includes seventy-two test sites in fourteen countries throughout 
Iberoamerica, Pintos, Queipo, Troconis de Rincón, Rincón, and 
Morcillo developed ANN and regression analysis models as 
functions of time of wetness, chloride deposition rate, sulfate 
deposition rate, relative humidity, precipitation, and 
temperature [7]. The results indicated that the ANN model 
exhibited superior performance than the regression model, and 
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is able to provide reasonable corrosion rates for a variety of 
climatological and pollution conditions. 

Díaz, López, and Rivero used an ANN model and 
experimental corrosion data of low alloy steel subtracts in three 
test sites in Uruguay to develop the damage function of carbon 
steel [8, 9]. The ANN numerical model showed attractive 
results regarding goodness of fit and residual distributions.  

Kenny, Paredes, Lacerda, Sica, Souza, and Lázaris applied 
ANN to predict low-carbon steel, copper and aluminum 
corrosion rates according to environmental parameters along 
the transmission electric energy lines in the area of Sao Luis-
Maranhao, Brazil [10]. Exposure time, relative humidity, time 
of wetness, precipitation, wind velocity, solar radiation, 
chloride ions, sulfur compounds, dustfall, and temperature were 
employed as the inputs of ANN model. The obtained results 
indicate that ANN can be used as a good corrosion estimator. 

Jančíková, Kreislová, Koštial, Ružiak, and Bogar utilized 
ANN to predict atmospheric corrosion of steel in Czech [11]. 
Temperature, relative humidity, precipitation, pH of rainfall, air 
pollution by sulphur dioxide and exposition time were used as 
an input vector. Corrosion weight loss of structural carbon steel 
represented an output vector. It is found that ANN is 
advantageous and the relative error of steel corrosion loss 
prediction is only 6 %. 

Halama, Kreislova, and Lysebettens used data from long 
term exposure (1968 to 1995) of carbon steel samples from 
three different locations in the Czech Republic to develop an 
ANN model to predict atmospheric corrosion of carbon steel 
[12]. The results showed that the ANN model is robust and 
relatively fast and precise, with errors below 20%. 

This study employs ANN and the data of atmosphere 
corrosion investigation of Carbon steel in Taiwan to develop a 
corrosion prediction model. The data were monitored in 
different industrial zones and collected by The Institute of 
Harbor and Marine Technology (IHMT) from July, 2009 to 
March, 2011. The ANN model aims to predict the atmospheric 
corrosion rates of carbon steel in Taiwan’s industrial area. 

II. METHODOLOGY 

A. Preparation of Data Sets 

This study used the ISO corrosion environment category to 
classify the original corrosion rates of carbon steel in Taiwan. 
Since there are not C1 and C2 categories monitored in Taiwan, 
these two categories are not considered in this study. However, 
category C5+ is further divided into C6, C7 and C8 categories, 
as shown in TABLE I. 

TABLE I.  CATEGORY OF CARBON STEEL CORROSION RATES 

Category  Carbon Steel Corrosion Rates,  γcorr 

C3 25＜γcorr50  μm/yr 
C4 50＜γcorr80   μm/yr 
C5 80＜γcorr200  μm/yr 
C6 200＜γcorr300 μm/yr 
C7 300＜γcorr400  μm/yr 
C8 400＜γcorr               μm/yr 

Due to the corrosion rates of carbon steel is closely related 
to the concentrations of environmental pollutants and 
meteorology variables, this study summarized variables from 
previous studies, and conduct correlation analysis of these 
variables and carbon steel corrosion rates. The results are listed 
in TABLE II. 

Since small amounts of extreme values contained in the 
training data set of ANN will affect the training results and 
prediction performance. This study duplicated the extreme 
values (DEV) in the training data set to let ANN get more 
familiar with them, and attempt to increase the prediction 
ability and accuracy of ANN. Extreme values in this study are 
those corrosion rates belong to C3 and C+ (i.e., C6~C8) 
categories. 

B. Artificial Neural Network 

An ANN is a highly connected array of elementary 
processors called neurons. The multi-layered perceptron (MLP) 
ANN is the most widely used model. It consists of one input 
layer of neurons, one or more hidden layers of neurons, and a 
final layer of output neurons. Each neuron in a layer is 
connected to the neurons in the adjacent layer with different 
weights. Signals pass from the input layer to the output layer. 
In the hidden and the output layers, each neuron receives 
signals from the neurons of the previous layer. The passing 
signals are weighted by the activation (or transfer) functions 
between neurons. 

The back-propagation network (BPN) ANN is one of the 
widely used MLP ANN models. The principle of BPN is using 
steepest gradient descent method to minimize the deviations 
between observed and predicted data. Such a deviation 
minimization is achieved by the learning process. The learning 
process take one training sample for each time, and one 
“learning epoch” is completed when all training samples are all 
finished. A BPN can undergo sample training for several 
learning epoch until it is converged. Figure 1 illustrates a 
typical architecture of BPN ANN, and the important elements 
of ANN include input layer, hidden layer, and output layer, as 
described below [13]:. 

TABLE II.  THE VARIABLES USED BY ANN TO PREDICT 
ATMOSPHERIC CORROSION RATES OF CARBON STEEL 

Variables Unit 

SO2 Deposition Rate mg/m2day 

Chloride
Deposition Rate mg/m2day 

Exposure Time hour 

Time of Wetness hour 

Rain Duration Time hour 

Solar Radiation hour 

Rainfall mm 

Average Temperature ℃ 

Average Wind Velocity m/s 

Average Wind Direction 360 degree 

Advances in Intelligent Systems Research, volume 132

279



1. Input Layer:  Input layer is used to input variables to ANN. 
The number of neurons is problem-depend, and the input 
variables are based on the selection of the independent 
variables of the problem under investigated. 

2. Hidden Layer: Hidden layer is used to transform the 
signals received from the input layer to suitable forms for 
the usage of the output layer. Originally, there were no 
hidden layers in the earliest ANN models, and the outputs 
were merely simple functions of the inputs. The setup of 
hidden layers between the input and output layers could 
significantly enhance the capabilities of ANN models. 

3. Output Layer: The output layer is used to show the results 
of output variables of the network. The number of neurons 
of output layer depends on the complexity of the problem. 

4. Activation function: The activation function defines the 
relation of input variables (Xi) and output variables (Yi),  Yj 

＝ f (Xj). Two types of activation functions are commonly 
used. Discrete activation functions include linear function 
and step function. Continuous activation functions include 
sigmoid function and hyperbolic tangent function. 

 
FIGURE I.  BPN FRAMEWORK. 

The symbols in FIGURE I are summarized in the following: 
Xi: variables of input layer (i = 1,2,3,….n); Wik: weighted 
values between input layer and hidden layer (k＝1, 2, 3, ····, m); 
Wkj: weighted value between hidden layer and output layer (j＝
1, 2, 3,····, p); Yj: The variables of output layer.  

Root of mean square of error (RMSE), mean absolute error 
(MAE) and determination coefficient (R2) were employed to 
evaluate the prediction performance of the ANN models, and 
are described in the following equations: 
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where Ti and Yi are the observation and prediction values of 
sample i, respectively; n is the number of samples, SSR is the 

regression sum of squares; SST is the total sum of squares; T is 
the average of observation values of the samples.  

Different types of ANN models were developed to 
respectively predict the corrosion rates and corrosion categories 
of carbon steel in Taiwan’s general and coastal industrial areas. 
The models are summarized as: 

1. CRG model: predict the corrosion rates of carbon steel in 
general industrial area. 

2. CRC model: predict the corrosion rates of carbon steel in 
coastal industrial area. 

3. CCG model: predict the corrosion categories of carbon 
steel in general industrial area. 

4. CCC model: predict the corrosion categories of carbon 
steel in coastal industrial area. 

The input variables for ANN models include SO2 
deposition rate, exposure time, time of wetness, rain duration 
time, solar radiation, rainfall, average temperature, average 
wind velocity, and average wind direction. However, for 
corrosion predictions of coastal industrial areas, one more input 
variable, chloride deposition rate, is included. On the other 
hand, the output variables for corrosion rates prediction (CRG 
& CRC) and corrosion categories prediction (CCG & CCC) are 
carbon steel corrosion rate (μm/year) and corrosion category 
(C3 ~ C8), respectively. 

Since the collected corrosion data with low and high 
corrosion rates (regarding as extreme values) are relatively few, 
this work duplicates the extreme values in the ANN training 
data sets, namely Duplicate Extreme Value ANN (DEV-ANN), 
to improve the ANN prediction accuracy of extreme values. 
The results and performance of DEV-ANN will be investigated 
and compared with traditional ANN. 

III. RESULTS AND DISCUSSION 

The comparisons of the RMSE and R2 of the ANN and 
DEV-ANN applied to corrosion rate prediction for general 
(CRG model) and coastal (CRC model) industrial zones are 
summarized in TABLE III and TABLE IV, respectively. It 
illustrates that both of the training and testing RMSEs of ANN 
can be reduced, and the R2 increased, by duplicating the 
extreme values.  
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TABLE III.  PERFORMANCE COMPARISON OF ANN AND DEV-ANN 
FOR GENERAL INDUSTRIAL ZONES (CRG MODEL). 

Model 
Training 
RMSE 

Testing 
RMSE 

R2 

ANN 0.0520 0.0436 0.68 

DEV-ANN 0.0288 0.0285 0.90 

TABLE IV.  PERFORMANCE COMPARISON OF ANN AND DEV-ANN 
FOR COASTAL INDUSTRIAL ZONES (CRC MODEL). 

Model 
Training 
RMSE 

Testing 
RMSE R2 

ANN 0.0823 0.0658 0.61 

DEV-ANN 0.0479 0.0473 0.88 

The observed and predicted carbon steel corrosion rates by 
ANN and DEV-ANN models for different corrosion categories 
are listed in TABLE V and TABLE VI. The mean absolute 
errors are also included. It can be found that the prediction 
errors (MAE) of DEV-ANN for categories C3, C4, and C5 are 
significantly less than ANN. However, ANN predictions are 
more accurately than DEV-ANN for category C5+. Generally, 
The DEV-ANN can successfully and accurately predict the 
carbon steel corrosion rates, especially for coastal industrial 
zones. 

TABLE V.  COMPARISON OF DIFFERENT CATEGARY PREDICTIONS 
OF ANN AND DEV-ANN FOR GENERAL INDUSTRIAL ZONES(CRG 

MODEL). 

Model Items C3 C4 C5 C5+ 

ANN 

Observed 38.71 65.71 117.93 293.34

Predicted 60.05 79.11 103.92 278.20

MAE 21.34 13.40 14.01 15.14

DEV-

ANN 

Observed 38.71 65.71 117.93 293.34

Predicted 45.49 71.70 110.90 239.00

MAE 6.78 5.99 7.03 54.34
Unit: µm/y 

TABLE VI.  COMPARISON OF DIFFERENT CATEGARY PREDICTIONS 
OF ANN AND DEV-ANN FOR COASTAL INDUSTRIAL ZONES(CRC 

MODEL). 

Model Items C3 C4 C5 C5+ 

ANN 

Observed 39.94 63.97 127.26 285.09

Predicted 175.69 59.85 118.63 289.21

MAE 135.75 4.12 8.63 4.12 

DEV-

ANN 

Observed 39.94 63.97 127.26 285.09

Predicted 42.93 64.93 126.14 280.73

MAE 2.99 0.96 1.12 4.36 
Unit: µm/y 

Besides metal corrosion rates, it will be very practical and 
convenient if the model can predict in which corrosion 
category a certain environmental and meteorological 
circumstance will result. Therefore, this study also applies 
ANN in corrosion category prediction. The statistical results 
shown in TABLE VII and TABLE VIII indicate that ANN can 
provide accurate predictions about carbon steel corrosion 
categories. Although there are up to 24% misjudgments for 

general industrial zone predictions, the coastal industrial zone 
predictions are almost 100% accurate.  

TABLE VII.  STATISTICAL RESULTS FOR CORROSION CATEGORY 
PREDICTION BY ANN. 

Model 
Training 

RMSE 

Testing 

RMSE 
R2 

For General 

Industrial Zones 
0.1033 0.1802 0.76 

For Coastal 

Industrial Zones 
0.0345 0.0727 0.98 

TABLE VIII.  ACCURACY OF CORROSION CATEGORY PREDICTION 

Model C3 C4 C5 C6 C7 C8 

For General 

Industrial Zones
89% 78% 91% 76% 83% 100%

For Coastal 

Industrial Zones
100% 100% 96% 100% 100% 50%

IV. CONCLUSION 

Several ANN models for prediction of carbon steel 
atmospheric corrosion in Taiwan industrial zones are described. 
The methodology involves preprocessing the monitored data 
set, setting the ANN model architectures, and training and 
testing the ANN models. The results indicate that duplicating 
the extreme values of training set data of ANN can 
significantly reduce the prediction errors. Generally, ANN can 
provide accurate predictions about carbon steel corrosion 
categories, especially for cases of coastal industrial zones. 
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