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Abstract—Soil moisture and crop evapotranspiration (ETc) 
forecast based on weather information is a basis for realizing 
precise irrigation, which could be an innovative technique for 
water–saving strategy in irrigated district. Combined with long–
term experimental data in People's Victory Canal irrigated 
district, we put forward a systematic soil moisture forecast 
method for winter wheat using related weather information. In 
this study, hourly soil moisture was automatically monitored by 
a soil moisture monitoring system. Weather information for the 
following two weeks was automatically acquired. Combined with 
ETc, soil moisture forecast can be used to predict irrigation time 
and amount which differs among growth stages of winter wheat. 
In particular, irrigation time can be decided by monitoring soil 
moisture when reaching to lower limit of soil moisture for winter 
wheat, and the irrigation amount can be determined by 
calculating soil water storage needed to meet planned wetting 
layer according to crop growth monitoring. Parameters in soil 
moisture and crop evapotranspiration forecast models were 
determined using Levenberg–Marquardt regression. Validation 
test suggests that the models we developed are reliable. We 
conclude that the models can serve as a useful tool for future 
irrigation forecast.  

Keywords–irrigation forecast; prediction model; crop water 
requirement; precipitation 

I. INTRODUCTION 

Soil moisture forecast is a dynamic process based on 
weather forecast information updated hourly by China 
Meteorological Administration [1]. Through estimating crop 
evapotranspiration (ETc) by prediction model, and measuring 
current soil moisture by soil moisture monitoring system, when 
and how much water should be irrigated for crops can be 
predicted [2]. In particular, future soil moisture simulation is 
mainly dependent upon weather forecast information and 
current soil moisture monitoring. To precisely forecast 
irrigation, best–fitted prediction model is needed to estimate 
ETc. Nowadays, it has been widely used for ETc prediction 
models established on water balance equation [3]. The core 
technique for when and how much water need to be irrigated is 
based on accurate soil moisture monitoring and precise 
weather forecast [4]. Therefore, the accuracy of irrigation 
prediction largely depends on how to acquire precise weather 
data for the following days. It is equally important that we 

should accurately estimate ETc by coupling reference 
evapotranspiraion (ET0) with crop coefficient (Kc) for irrigation 
forecast [5]. The estimate of ET0 is usually based on 
measurable and accessible climatic factors such as air 
temperature, solar radiation, and precipitation etc. [6]. Given 
that air temperature in weather forecast is a quantified figure 
that can be directly used and accumulated, model for 
accumulated air temperature simulation can be used to calculate 
ETc. As a result, choosing an optimal model for ETc and soil 
moisture forecast can be applied to improve the accuracy of 
irrigation forecast when parameters needed are of high accuracy 
[7]. The feasibility of a model usually needs to be validated 
through field experiments. In this study, we hypothesized that 
soil moisture forecast model developed based on weather 
forecast information was suitable and reliable for forecasting 
the irrigation time and amount in the People's Victory Canal 
irrigated district, North China Plain. 

II. WATER BALANCE EQUATION 

Soil moisture forecast is basically established on soil 
moisture monitoring system and crop evapotranspiration (ETc) 
estimated by weather forecast information [8]. That is, a 
forecast of an increase or decline of soil water content in the 
root zone, which changes with crop growth stages, can be 
estimated by subtracting predicted ETc from the current ETc, 
then we got the how much water should be consumed for the 
following days. Thus, it provides a possibility for forecasting 
irrigation time and amount for a given date. Water balance 
equation, which is used to calculate current ETc, is established 
to a depth equal to planned wetting layer [3]: 

iiciiierii RGETIPWWW  0 

where W0 and Wi are soil water storage (mm) in planned 
wetting layer at the initial (0) and current time (i); Wri is 
increased soil water storage (mm) due to increasing planned 
wetting layer with crop growth proceeding; Ii is irrigation 
amount (mm); Pei is effective precipitation (mm); ETci is future 
crop evapotranspiration (mm) to be predicted by an empirical 
model; Ri is surface runoff (mm); Gi is ground water recharge 
(mm). 
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The runoff is negligible due to less precipitation in the 
People's Victory Canal irrigated district during the entire 
growth period of winter wheat [9]. Thus Ri is assumed to be 0. 
In the mean time, the ground table is below 5m, therefore the 
upward movement is also neglected, i.e., Gi is assumed to be 0. 
Thus, the equation can be simplified as: 

ciiierii ETIPWWW  0 

Initial soil water content (W0), current soil water content in 
planned wetting layer (Wt), and increased soil water storage 
due to the planned wetting layer deepening with crop growth 
(Wr) can be obtained by field observation. Soil water storage 
(mm) in the planned wetting layer is a product of volumetric 
water content (cm3·cm–3) and soil depth (cm) [9]. Irrigation 
amount (Ii) is measured using a flow meter at the recharge end 
of a water pipe system. 

III. PREDICTION MODELS  

ETc can be calculated from meteorological data and crop 
coefficients (Kc). ETc is considered as a combined effect of the 
climate factors and crop growth on crop water requirements, 
which is illustrated by ET0 and Kc. 

A. Prediction Model for Crop Evapotranspiration 

Calculation of ETci can be achieved by multiplying 
reference evapotranspiration (ET0i) with crop coefficient (Kci) 
at a certain growth stage [3], and it can be expressed as: 

icici ETKET 0 

If soil water is deficit, the calculation should introduce a 
correction factor (Ksi): 

icisici ETKKET 0 

When Ksi equals 1.0, the simulation of ETci is considered 
under non–water stress condition [2]. 

B. Prediction Model for Reference Evapotranspiration 

Estimate of ET0 is a basis for soil moisture and ETc forecast. 
Because Harg model explicitly accounts for solar radiation and 
temperature [11], ET0 simulated by Harg model can be 
expressed as: 

0.5 max min
0 max min

1
0.0023 ( ) ( 17.8)

2 a

T T
ET T T R




    


where Ra is solar radiation (MJ·m–2·d–1); λ is latent heat of 
vaporization with a value of 2.45 MJ·kg–1 [12]; Tmax and Tmin 
are maximum and minimum air temperature (°C), respectively. 

Comparing the results of ET0 calculated by Harg model to 
that by Penman–Monteith (PM) model using a long term 

(1951–2002) ten–day meteorological data from Xinxiang city, 
North China Plain, the two calculation methods showed good 
consistency in ET0 simulation, with a mean deviation of 3.5 mm, 
and mean relatively deviation of 10% (Figure 1). Our results 
are consistent with the findings of Liu and Luo (2010) [13], 
who conducted a similar evaluation in North China Plain. The 
correlation coefficient (r2) between the two ET0 results reached 
0.81, showing a significant correlation between Harg and PM 
methods (P<0.05).  

 
FIGURE I.   (A) ET0 CALCULATED USING HARG MODEL AT TEN–

DAY SERIES , AND (B) THE CORRELATION ANALYSIS 
BETWEEN ET0 CALCULATED BY HARG AND BY PM MODELS. 

In order to improve the accuracy of the predicted ET0 values, 
some corrections for parameters like K, n, and Toff need to be 
iterated in Harg model using Levenberg–Marquardt regression: 
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where K is a constant to be fitted for determining the slope; n is 
an empirical exponential coefficient to be fitted. Toff is an 
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empirical temperature value calibrated to offset biases in 
“Tmax–Tmin” at different latitudes. To calibrate the Harg model, 
parameters were iterated into Levenberg–Marquardt Algorithm 
using Statistical Analysis Software (SPSS 19.0, SPSS Institute 
Inc., USA). After the iteration, the best fitted values for the 
parameters are 0.008 (K), 0.796 (n), and 29.506 (Toff) (r2=0.907, 
P<0.01), respectively. The parameters estimated in this study 
are similar to the results of Tang et al. (2016) [12], who 
concluded some key parameters for the model using Harg 
formula in the Huang–Huai–Hai Plain. 

C. Determination of Crop Coefficient (Kci) 

For a given cultivar of winter wheat, Kci is mainly 
controlled by crop growth stages, and is also linked with crop 
canopy development [3]. Our study showed that there existed a 
significant linear relationship between leaf area index (LAI) 
and Kci: 

bLAIaKci  

where a and b are the slope and interception for the equation. 
By iterating field observed data into Levenberg–Marquardt 
regression, it was suggested that 0.14 (a), and 0.3918 (b) be the 
best fittest parameters (r2 = 0.928, P<0.01). 

Except the indigenous genetic traits, cumulative relative 
growth degree days (RGDD, °C·d) during the growing season 
is a major factor determining crop growth and development 
[14]. Since RGDD is a product of accumulated air temperature 
(°C) and elapsed time (d) for fulfilling a life cycle of crops, the 
requirement of crops to RGDD is always stable and 
unchangeable. Namely, RGDD must be adequate to meet the 
crop demand. Our study showed that there existed a good 
correlation between RGDD and LAI, and the regression 
between RGDD and LAI was fitted to j–th order (j=0,……,5) 
Logistic curve, where the fifth–order Logistic curve had the 
best goodness of fit (Figure 2): 
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5
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where LAImax is the largest LAI value during the entire growth 
stage; RGDD is the relative cumulative growth degree days 
(that is, the ratio of phase cumulative RGDD to the whole 
RGDD); j is the j–th power of the Logistic curve; aj 
(j=0,……,5) and b are empirical coefficients to be fitted. After 
regression by fifth–order, it was suggested that 24.84 (a0), –
161.4 (a1), 374 (a2), –392.6 (a3), 169.2 (a4), –11.46 (a5), and 
1.169 (b) be the best fitted parameters (r2=0.977, P<0.01). Our 
results are in good agreement with the findings of Wang et al., 
(2011) [15], who conducted a similar simulation between LAI 
and RGDD, but we obtained a higher fitness for the model due 
to a higher order curve than that of Wang et al. (2011) [15]. 

When integrate the two models into one, a model for 
predicting crop coefficient (Kci) based on RGDD can be 
established. It is necessary that, when to predict Kci using the 

integrated model, we should consider the freezing period when 
a very low temperature might occur in the wintering period of 
winter wheat, and correct the Kci to be 0.4 rather than a value 
predicted by the model [13]. While before and after the 
wintering period, the predicted Kci values can be acceptable for 
calculating ETc. 

D. Determination of Calibration Coefficient for Soil Moisture 
(Ksi) 

If observed soil water content is significantly lower than the 
critical value that triggers crop wilting, ETc will be markedly 
constrained [3]. Otherwise, soil water content will normally not 
be a constraint to depressing ETc. Thus, the Ksi can be 
expressed as:  

 

FIGURE II.   (A) RELATIONSHIP BETWEEN CROP COEFFICIENT (KC) 
AND LEAF AREA INDEX (LAI), AND (B) RELATIONSHIP 

BETWEEN CUMULATIVE RELATIVE GROWTH DEGREE DAYS 
(RGDD, °C·D) AND RELATIVE LEAF AREA INDEX (RLAI). 
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where d is an empirical coefficient obtained from field 
observation, and it changes with crop growth stages and soil 
water status. θi is mean soil water content during a given 
growth phase; θup is the wilting point; θj is the critical soil 
water content. According to the ranges of Kci changing with 
crop growth stages, four growth stages were classified as 
follow: sowing to wintering stage, wintering to turning–green 
stage, turning–green to tasseling stage, and tasseling to 
maturity. After iteration using Levenberg–Marquardt 
Algorithm, it was suggested that the corresponding θj values be 
23.07, 22.52, 20.20, and 22.68 for the four growth phases of 
winter wheat, and the corresponding d values be 0.8156, 
0.9563, 0.7584, and 0.8753, respectively. Our results are 
consistent with the findings of Wang et al. (2010) [16], who 
established a simulation model based on plant height and leaf 
area index for winter wheat in the North China Plain. 
According to Wen et al. (2015) [17], those models can be 
integrated into one model for predicting ETc so that they can 
help local farmers and district governors determine irrigation 
time and amount. 

E. Validation of the Model for Forecasting Soil Moisture 

The ten–day soil water content can be predicted by the 
established ETc model (Figure 3). Also, the predicted soil 
moisture values can be updated hourly according to the 
weather forecast information and observed soil water content. 
Compared the predicted and observed soil water content 
during the winter wheat growing season in 2012 and 2013, 
they basically showed good consistency, with a mean deviation 
of 2.45%. This indicated that the established soil moisture 
forecast model is reliable, and can serve as a useful tool for 
irrigation forecast in People's Victory Canal irrigated district, 
Xinxiang city, North China Plain. 

 
FIGURE III.  PREDICTED SOIL WATER CONTENT IN COMPARISON 

TO OBSERVED SOIL WATER CONTENT USING THE SOIL 
MOISTURE FORECAST MODEL. 

IV. CONCLUSIONS 

The model for predicting daily ETc based on weather 
forecast information has proven to be reasonable and reliable 

in the present study. On the basis of the model, a prediction 
model for simulating soil moisture has been established, and 
can be adopted to forecast daily soil moisture dynamics in the 
following two weeks in winter wheat growing season. Our 
study showed that there existed a very good agreement between 
the observed and predicted values of soil moisture, as well as 
ETc, indicating a good model performance. Taking lower limit 
of soil moisture and planned wetting layer into account, the 
models can serve as a strong support for establishing a 
irrigation forecast model for People's Victory Canal irrigated 
district, North China Plain, in the near future. 
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