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Abstract. Multi-static radar multi-target projection localization method overcomes data association 
problem in the viewpoint of the imaging technique, in which the receivers are considered as a sparse 
antenna array that causes 2-D spatial resolution, and the transmitted broadband signal causes the range 
resolution. However, the range resolution is decreased due to the main-lobes broadening and the 
side-lobes crosstalk after the pulse compression system. The main-lobes and the side-lobes of the 
targets of high scatter coefficient might be selected as the targets, which lead to some false targets. In 
order to eliminate the main-lobes broadening and the side-lobes crosstalk, in this paper we present a 
sparse recovery-based multi-static radar multi-target projection localization method. Exploiting the 
sparsity feature of the targets under the surveillance scene, the orthogonal matching pursuit algorithm 
is used to reconstruct signals of each receiver. Then, the reconstruction signals are projected by BR 
projection to image space in which the multi-target localization is performed by the PGC algorithm. 
The simulated results confirm that the proposed method eliminates the main-lobes broadening and the 
side-lobes crosstalk and improves the range resolution. 

Introduction 
In multi-static radar system, a transmitter emits signals with a specific pulse repetition frequency (PRF) 
to the surveillance region and the receivers deployed in a vast area receive the echoes of the region. 
Consider that there are only the time of arrival (TOA) measurements can be obtained, such as the 
transmitter and the receivers equip the omnidirectional antenna and work with the flood-light 
transmitting mode. For the localization of multi-target, data association is required and extremely 
complex. Typical data association algorithms include multiple hypothesis tracking (MHT) [1] and joint 
probabilistic data association (JPDA) [2] for multi-target localization. 

As another method which can avoid data association, multi-target positioning via projection in the 
viewpoint of the imaging technique have been proposed in [3, 4]. The receivers are considered as a 
sparse antenna array that causes 2-D spatial resolution, and the transmitted broadband signal causes the 
range resolution. Thus, the multi-target positioning problem is solved by the bistatic range space (BR 
space) projection algorithm and Positioning via Greedy and Cleaning (PGC) algorithm jointly. 
However, the range resolution should decline because of the broadened main-lobe and the crosstalk 
side-lobe caused by the ambiguity function after the pulse compression system. This might lead to some 
false targets in the image space. 

In this paper, we extend the approach of multi-target positioning via projection to compressed 
sensing (CS). Considering the surveillance task, the range cells occupied by the echoes of the targets 
are few compared with the range domain. Thus, the echoes are sparse in the range domain. The sparse 
recovery methods, such as the orthogonal matching pursuit (OMP) algorithm [5, 6], basis pursuit (BP) 
[7] and regularization technique [8], can be applied to eliminate the side-lobes and increase the range 
resolution. 

The organization of this paper is as follows. In section II, we introduce the multi-static radar signal 
model and sketch it as a linear inverse problem. In section III, the OMP-based multi-static radar 
multi-targets projection localization is proposed. The performance is analyzed via numerical 
experiment in section IV. The conclusions are presented in section V finally. 
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Model and Problem Formulation 

Signal Model. Assuming that a target locates at wP , the TOA from the transmitter by the target to the 
i th receiver is, 

( ) ( )2 2

1 1 ;T w w R wi i
C C

τ− + − =P P P P P , 1, ,i N= L                                                                                              (1) 

where, TP  denotes the transmitter’s position, ( )R iP  denotes the positions of the i th receiver, C  is the 
speed of light in air, ( ); wiτ P denotes the TOA of the i th receiver that can be measure directly. The 
TOA is proportional to the bistatic range (BR). Thus, Eq. 1 can be rewritten as, 

( ) ( )2 2
;T w w R wi R i− + − =P P P P P , 1, ,i N= L                                                                                              (2) 

where ( ) ( ); ;w wR i C iτ=P P  denotes the bistatic range of the i th receiver. 
The received echo of the i th receiver for wP  can be expressed as follows, 

( ) ( ) ( )( ) ( ) ( )( )2
, ; ; exp 2 ; exp ;w w c w dr wS i l i j f i j f t l iσ π τ π τ = − − P P P P , 1, ,l Nrange= L , 1, ,i N= L                                 

(3) 
where ( ); wiσ P  denotes the scattering coefficient of the target located at wP  at the ith receiver, l  is the 
index of fast time, Nrange  is the number of samples in the bistatic range domain, cf  denotes the carrier 
frequency, drf  is the LFM chirp rate. 

After the range-compression for the pulse compression system, the compressed echo can be 
expressed as, 

( ) ( ) ( ) ( )( ) ( )( ), ; ; ; exp ;w w w wS i l i sinc r l R i jkR iσ= − −P P P P , 1, ,l Nrange= L , 1, ,i N= L                                 (4) 
where r  denotes the bistatic range domain, ( )r l  denotes the l th bistatic range call in bistatic range 
domain, 2 ck f Cπ=  the wave number, ( ) ( )( ); wsinc r l R i− P  is the range ambiguity function. For 
multi-target environment, the echoes signal is the sum of all targets, i.e., 

( ) ( ) ( ) ( ) ( )( ) ( )( ), , ; ; ; exp ;w w w w
w w

S i l S i l i sinc r l R i jkR iσ= = − −∑ ∑P P P P , 1, ,w K= L                                         (5) 

where K denotes the number of targets.  
From Eq. 5, we can find that the main-lobes might be broadened and the side-lobes might crosstalk 

because of the Sinc function, which will lead to the range resolution declines. Because the range cells 
occupied by the echoes of K  targets are far less than the number of the range domain, it can be 
considered that the echoes signal is sparse in the range domain. Thus, the CS theory [9] can be used and 
the sparse recovery algorithms can be applied to eliminate the side-lobes. For satisfy CS theory, first of 
all, a linear model of echo signal must be created. 
Create a Linear Model for Echo Signal. Due to the position and the number of the targets are 
unknown for multi-static radar multi-target localization, we assume that Nrange  point targets are 
located at all of bistatic range cells in bistatic range domain. Thus, Eq. 5 is rewritten as, 

( ) ( ) ( ) ( ) ( )( ) ( )( ), , ; ; expm
m m

S i l S i l r i m sinc r l r m jkr mσ= = − −∑ ∑ , 1, ,m Nrange= L                                         (6) 

where ( );i mσ  denotes the scattering coefficient at mth bistatic range cell of the ith receiver. Let 
( ) ( ){ }; , 1, ,i i m m Nrangeσ= = Kσ  denotes an Nrange -elements scattering coefficient vector of the ith 

receiver. Ideally, the number of nonzero of ( )iσ  equals the number of targets K . Since the number of 
bistatic range cells always far greater than the number of targets, i.e., K Nrange , the scattering 
coefficient vector ( )iσ  can be expressed in a space orthogonal basis Nrange Nrange×∈ RΨ  as 
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( ) ( )i i=σ αΨ                                                                                                                                                           (7) 
where ( )iα  is defined as the vector whose nonzero components are corresponding to the complex 
amplitudes of K  point targets. Thus, ( )iσ  is K -sparse in Ψ . Further, we can parameterize Eq. 6 in 
terms of the scattering coefficient vector ( ) 1Nrangei ×∈σ  and ( ) 1Nrangel ×∈Φ  as follow 

( ) ( ) ( ), TS i l l i= Φ σ , 1, ,l Nrange= L , 1, ,i N= L                                                                                               (8) 
where ( ) ( ) ( )( ) ( )( ){ }exp , 1, ,l sinc r l r m jkr m m Nrange= − − = KΦ  is interpreted as an Nrange -element 
measurement vector at the bistatic range cell l . We rearrange the echo signal Eq. 8 to a vector as, 

( ) ( ){ }, ; 1, ,i S i l l Nrange= = KS                                                                                                                                     (9) 
where ( )iS  is an Nrange -element vector. When we take an additive noise ( )iv  (e.g., assuming a white 
Gaussian noise with zero-mean and variance ( )iΣ ), the relationship between ( )iσ  and the observed 
signal vector ( )iS  can be compactly expressed as a linear model, 

( ) ( ) ( )+i i i= AσS v                                                                                                                                     (10) 
where Nrange Nrange×∈A   denotes the measurement matrix of the observed signal at the i th receiver. 

From Eq. 10, we can see that estimating or recovering the scattering coefficient vector ( )iσ  from a 
linear equation with the given measurement matrix A  and the measured signal ( )iS  will eliminate the 
side-lobes. Since the scattering coefficient vector ( )iσ  is sparse according to Eq. 7 and Eq. 10 satisfies 
CS theory [9], the sparse recovery techniques, such as the OMP, BP and regularization technique, can 
be applied to recover ( )iσ  and eliminate the side-lobes. Among them, the OMP algorithm is the most 
effective one, which is suitable for multi-static radar multi-target localization application. 

Recovery via Orthogonal Matching Pursuit 
OMP is an iterative greedy algorithm that selects at each step the column of A  which is most 
correlated with the current residuals. This column is then added into the set of selected columns. The 
algorithm updates the residuals by projecting the observation ( )iS  onto the linear subspace spanned by 
the columns that have already been selected and the algorithm then iterates. The pseudo-code of the 
OMP-based multi-static radar multi-target projection localization is summarized in Algorithm 1. 

Algorithm 1: OMP for multi-static radar multi-target projection localization 
Parameter: Given the measurement matrix A , the measurements ( )iS , and the error threshold 0ε . 
Initialization: Initialize 0k = , ( )(0) 0i =σ , ( ) ( )(0) i i=r S , ( ) ( )0 i φ=Ω . 
Main Iteration: Increment k  by 1 and perform the following steps: 

1). ( ) ( ) ( ) ( )1

2
arg maxk kT

jj
j i i−= rΑ . 

            2). ( ) ( ) ( ) ( ) ( ) ( )1k k ki i j i−= ∪Ω Ω . 
3). ( ) ( ) ( ) ( )( )

kk
k Hi i

ΩΩ
= Aσ S , ( ) ( )

( ) 0k
k i

Ω
=σ . 

4). ( ) ( ) ( )( ) ( )k ki i i= − Aσr S . 
5). Repeat steps 1-4, until all sensors are processed. 

6). ( ) ( ) ( )
1

N
k k

i
i N

=

= ∑r r . 

7). Stopping rule: If ( )
02

k ε<r , stop. Otherwise, apply another iteration. 

Outputs: k - sparse approximation ( ) ( ) ( )ki i←σ σ  
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Once the reconstructed scattering coefficient vector ( )iσ  is obtained, multi-target positioning via 
projection method calculates the existence probability for each of ( )iσ , projects the existence 
probability which is larger than the threshold to the BR image space via BR space projection, and 
extracts and locates the targets via PGC algorithm in BR image space. 

Performance Analysis and Discussion 
Assume that the transmitter is placed at the origin, and there are 20 receivers, three of them are located 
at [-25, 0, 0]km, [25, 0, 0]km and [0, 43, 0]km, and the others distribute uniformly in the triangle 
determined by the three receivers. Five targets are distributed uniformly in a 3-D cube with size 400×
400×400 m3 and centered at [50, 50, 10] km. The RCSes of the targets vary from 1 to 30 at random, 
some Gauss noises with standard deviation 0.2 are added in the echoes. The system’s range resolution 
is 10m. 

The original signal and the recovery signal in the bistatic range domain of the 5th sensor and the 10th 
sensor are plotted in Fig. 1 and Fig. 2, respectively. The subfigures in Fig. 1 and Fig. 2 are the zoom-in 
figure of the bistatic range cells which are occupied by the targets. From them, we can first find that the 
targets occupied bistaice range cells are different of each receiver due to the different geographic 
position of the receivers. Next, we observe the main-lobe broadening and the side-lobes crosstalk of 
the original signal as discussed in section II. Due to this reason, there are a dozen of locations that 
might be considered as targets for the original signal. On the contrary, there are only five spikes of the 
recovery signals which correspond to the five targets. Obviously, the side-lobes are eliminated and 
range resolution is improved by spares recovery technique. Fig. 1, Fig. 2 and other simulation results 
(not shown here for brevity) confirm that the OMP algorithm for multi-static radar multi-target 
projection localization algorithm eliminates the side-lobes and improves the range resolution. Fig. 3 
plots the location result of the OMP-based multi-static radar multi-target projection localization that 
matches the actual locations soundly. 
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  Fig. 1. The original signal and the recovery signal of 5th sensor.        Fig. 2 The original signal and the recovery signal of 10th sensor 
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Fig. 3. Location result of OMP-based multi-static radar multi-target projection localization 
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Conclusions 
In this paper, we present a multi-static radar multi-target projection localization based on sparse 
reconstruction to eliminate the main-lobes broadening and the side-lobes crosstalk and increase the 
range resolution. Since the echoes in bistatic range domain are sparse, the linear model for echo signal 
is created and OMP algorithm is used to reconstruction echo signal. Simulated results show that the 
main-lobes broadening and the side-lobes crosstalk are eliminated and the range resolution is improved 
by the presented method. However, there are still some challenges need to be overcome, for example 
the error threshold 0ε  in the OMP algorithm should be further discussed. 
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