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Abstract. In this paper, by using Cauchy inequality, monotonicity of functions, Hilbert type 
inequality with finite series version is established. 
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Hilbert type inequalities are given by 
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 (see Hardy et al.[1]). In recently years, various improvements and extensions of the Hilbert 
inequality and Hilbert type inequalities appear in a great deal of papers (see [2-5]). Zhang xiaoming, 
Chu yuming ([2]) gave improvement of (2) as: 
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The major objective of this paper is to formulate new inequalities, which is improvement of (6). 

Some lemmas  
In order to prove our main result we need some lemmas, which we present in this section. 

Lemma 1 If 1 , ,n N n N≤ ≤ are positive integers, then   
（ⅰ） 
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Proof. （ⅰ）see[7]. 
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Main results 

Theorem 1 If 0, 0, 1, 2, , .n na b n N≥ ≥ = L  N is positive integer, then 
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Proof.  Let , ,n n n nc na d nb= =  then inequality (11) is translated into 
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By using Cauchy inequality, we have 
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Let 1 2 1 2( , , , , , , , )n nf c c c d d dL L  
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to compute the partial derivatives of a function 1 2 1 2( , , , , , , , )n nf c c c d d dL L with respect to ic . id , 
and using lemma 1, we have  
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In view of (13), (12) holds. The theorem is proved. 
 
From theorem 1 and lammas 2, we have  
 
Theorem 2  If 0, 0, 1, 2, , .n na b n N≥ ≥ = L  N is positive integer, then 
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