A Hilbert Type Inequality for Finite Series

Baoju Sun
Department of Mathematics
Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang 310018, China sunbj@zjweu.edu.cn

Keywords: Hilbert Type inequality; Cauchy inequality; monotonicity of functions
Abstract. In this paper, by using Cauchy inequality, monotonicity of functions, Hilbert type inequality with finite series version is established.

Introduction

If $a_{n} \geq 0, b_{n} \geq 0, m, n \in \mathrm{~N}$, such that $0<\sum_{n=1}^{\infty} a_{n}^{2}<\infty, 0<\sum_{n=1}^{\infty} b_{n}^{2}<\infty$, then the well known Hilbert inequalities are given by

$$
\begin{align*}
& \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\pi\left(\sum_{n=1}^{\infty} a_{n}^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty} b_{n}^{2}\right)^{1 / 2} . \tag{1}\\
& \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{a_{m} b_{n}}{m+n}<\pi\left(\sum_{n=1}^{N} a_{n}^{2}\right)^{1 / 2}\left(\sum_{n=1}^{N} b_{n}^{2}\right)^{1 / 2} . \tag{2}
\end{align*}
$$

Hilbert type inequalities are given by

$$
\begin{align*}
& \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{\max (m, n)}<4\left(\sum_{n=1}^{\infty} a_{n}^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty} b_{n}^{2}\right)^{1 / 2} . \tag{3}\\
& \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{a_{m} b_{n}}{\max (m, n)}<4\left(\sum_{n=1}^{N} a_{n}^{2}\right)^{1 / 2}\left(\sum_{n=1}^{N} b_{n}^{2}\right)^{1 / 2} . \tag{4}\\
& \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{|\ln (m / n)| a_{m} b_{n}}{\max (m, n)}<8\left(\sum_{n=1}^{\infty} a_{n}^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty} b_{n}^{2}\right)^{1 / 2} . \tag{5}\\
& \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)| a_{m} b_{n}}{\max (m, n)}<8\left(\sum_{n=1}^{N} a_{n}^{2}\right)^{1 / 2}\left(\sum_{n=1}^{N} b_{n}^{2}\right)^{1 / 2} . \tag{6}
\end{align*}
$$

(see Hardy et al.[1]). In recently years, various improvements and extensions of the Hilbert inequality and Hilbert type inequalities appear in a great deal of papers (see [2-5]). Zhang xiaoming, Chu yuming ([2]) gave improvement of (2) as:

$$
\begin{equation*}
\pi^{2} \sum_{n=1}^{N} a_{n}^{2} \sum_{n=1}^{N} b_{n}^{2}-\left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{a_{m} b_{n}}{m+n}\right)^{2} \geq \min _{1 \leq n \leq N}\left\{n a_{n}^{2}\right\}_{1 \leq n \leq N} \min _{n=1}\left\{n b_{n}^{2}\right\}\left[\pi^{2}\left(\sum_{n=1}^{N} \frac{1}{n}\right)^{2}-\left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{1}{\sqrt{m n}(m+n)}\right)^{2}\right] \tag{7}
\end{equation*}
$$

The major objective of this paper is to formulate new inequalities, which is improvement of (6).

Some lemmas

In order to prove our main result we need some lemmas, which we present in this section.
Lemma 1 If $1 \leq n \leq N, n, N$ are positive integers, then
(i)

$$
\begin{gather*}
\sum_{m=1}^{N} \frac{|\ln (m / n)|}{\sqrt{m} \cdot \max (m, n)}<8 n^{-1 / 2} \tag{8}\\
\sum_{m=1}^{N+1} \frac{\mid \ln (m /(N+1) \mid}{\sqrt{m} \cdot \max (m, N+1)}<4(N+1)^{-1 / 2} . \tag{9}
\end{gather*}
$$

Proof. (i) see[7].
(ii)
$\sum_{m=1}^{N+1} \frac{|\ln (m /(N+1))|}{\sqrt{m} \cdot \max (m, N+1)}<\int_{0}^{N+1} \frac{|\ln (x /(N+1))|}{(N+1) \sqrt{x}} d x=\int_{0}^{1} \frac{-\ln t}{\sqrt{N+1} \sqrt{t}} d t=4(N+1)^{-1 / 2}$.
(iii)

$$
\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{|\ln (m / n)|}{\sqrt{m n} \cdot \max (m, n)}<\sum_{n=1}^{N} \frac{1}{\sqrt{n}} 8 n^{-\frac{1}{2}}=8 \sum_{n=1}^{N} \frac{1}{n}
$$

Lemma 2 Let $f(N)=64\left(\sum_{n=1}^{N} \frac{1}{n}\right)^{2}-\left(\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{|\ln (m / n)|}{\sqrt{m n} \cdot \max (m, n)}\right)^{2}$, then $f(N+1)>f(N)$.

Proof. $f(N+1)-f(N)$
$=64\left(2 \sum_{n=1}^{N} \frac{1}{n}+\frac{1}{N+1}\right)-\left(\frac{2}{\sqrt{N+1}} \sum_{n=1}^{N+1} \frac{\mid \ln (n /(N+1) \mid}{\sqrt{n} \cdot \max (N+1, n)}\right) \times\left[2 \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)|}{\sqrt{m n} \cdot \max (m, n)}\right.$
$\left.+\frac{2}{\sqrt{N+1}} \sum_{n=1}^{N+1} \frac{|\ln (n /(N+1))|}{\sqrt{n} \cdot \max (N+1, n)}\right]$
$>64\left(2 \sum_{n=1}^{N} \frac{1}{n}+\frac{1}{N+1}\right)-\frac{8}{N+1}\left(16 \sum_{n=1}^{N} \frac{1}{n}+\frac{8}{N+1}\right)=0$.

Main results

Theorem 1 If $a_{n} \geq 0, b_{n} \geq 0, n=1,2, \mathrm{~L}, N . \quad N$ is positive integer, then
$64 \sum_{n=1}^{N} a_{n}^{2} \sum_{n=1}^{N} b_{n}^{2}-\left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)| a_{m} b_{n}}{\max (m, n)}\right)^{2}$
$\geq \min _{1 \leq n \leq N}\left\{n a_{n}^{2}\right\} \min _{1 \leq n \leq N}\left\{n b_{n}^{2}\right\}\left[64\left(\sum_{n=1}^{N} \frac{1}{n}\right)^{2}-\left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)|}{\sqrt{m n} \cdot \max (m, n)}\right)^{2}\right]$
Proof. Let $c_{n}=\sqrt{n} a_{n}, d_{n}=\sqrt{n} b_{n}$, then inequality (11) is translated into

$$
\begin{align*}
& 64 \sum_{n=1}^{N} \frac{c_{n}^{2}}{n} \sum_{n=1}^{N} \frac{d_{n}^{2}}{n}-\left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)| c_{m} d_{n}}{\sqrt{m n} \cdot \max (m, n)}\right)^{2} \\
\geq & \min _{1 \leq n \leq N}\left\{c_{n}^{2}\right\}_{1 \leq n \leq N}\left\{d_{n}^{2}\right\}\left[64\left(\sum_{n=1}^{N} \frac{1}{n}\right)^{2}-\left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)|}{\sqrt{m n} \cdot \max (m, n)}\right)^{2}\right] . \tag{12}
\end{align*}
$$

By using Cauchy inequality, we have

$$
\begin{align*}
& 64 \sum_{n=1}^{N} \frac{c_{n}^{2}}{n} \sum_{n=1}^{N} \frac{d_{n}^{2}}{n}-\left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)| c_{m} d_{n}}{\sqrt{m n} \cdot \max (m, n)}\right)^{2} \\
& \geq 64 \sum_{n=1}^{N} \frac{c_{n}^{2}}{n} \sum_{n=1}^{N} \frac{d_{n}^{2}}{n}-\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)| c_{m}^{2}}{\sqrt{m n} \cdot \max (m, n)} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)| d_{n}^{2}}{\sqrt{m n} \cdot \max (m, n)} . \tag{13}
\end{align*}
$$

Let $f\left(c_{1}, c_{2}, \mathrm{~L}, c_{n}, d_{1}, d_{2}, \mathrm{~L}, d_{n}\right)$

$$
=64 \sum_{n=1}^{N} \frac{c_{n}^{2}}{n} \sum_{n=1}^{N} \frac{d_{n}^{2}}{n}-\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)| c_{m}^{2}}{\sqrt{m n} \cdot \max (m, n)} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)| d_{n}^{2}}{\sqrt{m n} \cdot \max (m, n)} .
$$

to compute the partial derivatives of a function $f\left(c_{1}, c_{2}, \mathrm{~L}, c_{n}, d_{1}, d_{2}, \mathrm{~L}, d_{n}\right)$ with respect to $c_{i} \cdot d_{i}$, and using lemma 1 , we have

$$
\begin{aligned}
& \frac{\partial f}{\partial c_{l}}=64 \cdot \frac{2 c_{i}}{i} \sum_{n=1}^{N} \frac{d_{n}^{2}}{n}-\sum_{n=1}^{N} \frac{2 c_{i}|\ln (i / n)|}{\sqrt{i} \sqrt{n} \cdot \max (i, n)} \sum_{n=1}^{N} \frac{d_{n}^{2}}{\sqrt{n}}\left(\sum_{m=1}^{N} \frac{|\ln (m / n)|}{\sqrt{m} \cdot \max (m, n)}\right) \\
& >\frac{128 c_{i}}{i} \sum_{n=1}^{N} \frac{d_{n}^{2}}{n}-\frac{2 c_{i}}{\sqrt{i}} \cdot 8 i^{-1 / 2} \sum_{n=1}^{N} \frac{d_{n}^{2}}{\sqrt{n}} 8 n^{-1 / 2}=0 .
\end{aligned}
$$

thus $f\left(c_{1}, c_{2}, \mathrm{~L}, c_{n}, d_{1}, d_{2}, \mathrm{~L}, d_{n}\right)$ is monotone increasing for c_{i}. In a similar way we can provde that $\frac{\partial f}{\partial d_{i}}>0$, and this implies $f\left(c_{1}, c_{2}, \mathrm{~L}, c_{n}, d_{1}, d_{2}, \mathrm{~L}, d_{n}\right)$ is monotone increasing for d_{i}. We obtain $f\left(c_{1}, c_{2}, \mathrm{~L}, c_{n}, d_{1}, d_{2}, \mathrm{~L}, d_{n}\right)$
$\geq f\left(\min _{1 \leq n \leq N}\left\{c_{n}\right\}, \min _{1 \leq n \leq N}\left\{c_{n}\right\}, \mathrm{L}, \min _{1 \leq n \leq N}\left\{c_{n}\right\}, \min _{1 \leq n \leq N}\left\{d_{n}\right\}, \min _{1 \leq n \leq N}\left\{d_{n}\right\}, \mathrm{L}, \min _{1 \leq n \leq N}\left\{d_{n}\right\}\right)$.
In view of (13), (12) holds. The theorem is proved.
From theorem 1 and lammas 2, we have

Theorem 2 If $a_{n} \geq 0, b_{n} \geq 0, n=1,2, \mathrm{~L}, N . \quad N$ is positive integer, then

$$
\begin{equation*}
64 \sum_{n=1}^{N} a_{n}^{2} \sum_{n=1}^{N} b_{n}^{2}-\left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln (m / n)| a_{m} b_{n}}{\max (m, n)}\right)^{2} \geq 64 \min _{1 \leq n \leq N}\left\{n a_{n}^{2}\right\} \min _{1 \leq n \leq N}\left\{n b_{n}^{2}\right\} . \tag{14}
\end{equation*}
$$

References

[1] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Gambridge University Press, Gambridge, 1952.
[2] X. Zhang, Y. Chu, New discussion to analytic inequalities, Harbin institute of technology press,2009.
[3] M. Gao, B. Yang, On the extended Hilbert's inequality, Proceeding of the American Mathematical Society 126 (1998), no.3, 751-759
[4] J. Kuang, L. Debnath, On new generalizations of Hilbert's inequality and their applications, Journal of Mathematical Analysis and Applications 245 (2000), no.1, 248-265.
[5] B. Yang, On a strengthened version of the more accurate Hardy-Hilbert's inequality, Acta Mathematica, Sinica (China) 42 (1999), no.6, 1103-1110.
[6] B. Yang, On a Base Hilber-type inequality, Journal of Guangdong Education Institute(Science Edition),26(2006), no.3, 1-5.
[7] B. Yang, A Hilber-type inequality with two pairs of conjugate exponents, Journal of JiLin University (Science Edition),45(2007), no.4, 524-528.
[8] B. Sun. A Multiple Hilbert type integral inequality with the best contant factor [J]. Journal of Inequalities and Applications, 2007.

