7th International Conference on Manufacturing Science and Engineering (ICMSE 2017)

A Hilbert Type Inequality for Finite Series

Baoju Sun

Department of Mathematics

Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang 310018, China

sunbj@zjweu.edu.cn

Keywords: Hilbert Type inequality; Cauchy inequality; monotonicity of functions **Abstract.** In this paper, by using Cauchy inequality, monotonicity of functions, Hilbert type inequality with finite series version is established.

Introduction

If $a_n \ge 0, b_n \ge 0$, $m, n \in \mathbb{N}$, such that $0 < \sum_{n=1}^{\infty} a_n^2 < \infty, 0 < \sum_{n=1}^{\infty} b_n^2 < \infty$, then the well known Hilbert

inequalities are given by

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_m b_n}{m+n} (1)$$

$$\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{a_m b_n}{m+n} (2)$$

Hilbert type inequalities are given by

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_m b_n}{max(m,n)} < 4 \left(\sum_{n=1}^{\infty} a_n^2 \right)^{1/2} \left(\sum_{n=1}^{\infty} b_n^2 \right)^{1/2}.$$
(3)

$$\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{a_m b_n}{max(m,n)} < 4 \left(\sum_{n=1}^{N} a_n^2 \right)^{1/2} \left(\sum_{n=1}^{N} b_n^2 \right)^{1/2}.$$
(4)

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\left|\ln(m/n)\right| a_m b_n}{max(m,n)} < 8 \left(\sum_{n=1}^{\infty} a_n^2\right)^{1/2} \left(\sum_{n=1}^{\infty} b_n^2\right)^{1/2}.$$
(5)

$$\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln(m/n)| a_m b_n}{max(m,n)} < 8 \left(\sum_{n=1}^{N} a_n^2 \right)^{1/2} \left(\sum_{n=1}^{N} b_n^2 \right)^{1/2}.$$
(6)

(see Hardy et al.[1]). In recently years, various improvements and extensions of the Hilbert inequality and Hilbert type inequalities appear in a great deal of papers (see [2-5]). Zhang xiaoming, Chu yuming ([2]) gave improvement of (2) as:

$$p^{2} \sum_{n=1}^{N} a_{n}^{2} \sum_{n=1}^{N} b_{n}^{2} - \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{a_{m} b_{n}}{m+n}\right)^{2} \ge \min_{1 \le n \le N} \left\{na_{n}^{2}\right\} \min_{1 \le n \le N} \left\{nb_{n}^{2}\right\} \left[p^{2} \left(\sum_{n=1}^{N} \frac{1}{n}\right)^{2} - \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{1}{\sqrt{mn}(m+n)}\right)^{2}\right]$$
(7)

The major objective of this paper is to formulate new inequalities, which is improvement of (6).

Some lemmas

In order to prove our main result we need some lemmas, which we present in this section.

Lemma 1 If $1 \le n \le N, n, N$ are positive integers, then

(i)

$$\sum_{m=1}^{N} \frac{\left|\ln(m/n)\right|}{\sqrt{m} \cdot max(m,n)} < 8n^{-\frac{1}{2}}.$$
(8) (ii)

)
$$\sum_{m=1}^{N+1} \frac{\left|\ln(m/(N+1))\right|}{\sqrt{m} \cdot max(m,N+1)} < 4(N+1)^{-\frac{1}{2}}.$$
 (9)

(iii)
$$\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{|\ln(m/n)|}{\sqrt{mn \cdot max(m,n)}} < 8 \sum_{n=1}^{N} \frac{1}{n}.$$
 (10)

Proof. (i) see[7].

$$\begin{aligned} &(\text{ ii }) \\ \sum_{m=1}^{N+1} \frac{\left|\ln(m/(N+1))\right|}{\sqrt{m} \cdot max(m,N+1)} < \int_{0}^{N+1} \frac{\left|\ln(x/(N+1))\right|}{(N+1)\sqrt{x}} dx = \int_{0}^{1} \frac{-\ln t}{\sqrt{N+1}\sqrt{t}} dt = 4(N+1)^{-\frac{1}{2}}. \\ &(\text{ iii }) \\ &\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{\left|\ln(m/n)\right|}{\sqrt{mn} \cdot max(m,n)} < \sum_{n=1}^{N} \frac{1}{\sqrt{n}} 8n^{-\frac{1}{2}} = 8\sum_{n=1}^{N} \frac{1}{n}. \end{aligned}$$

Lemma 2 Let
$$f(N) = 64\left(\sum_{n=1}^{N} \frac{1}{n}\right)^2 - \left(\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{|\ln(m/n)|}{\sqrt{mn} \cdot max(m,n)}\right)^2$$

then f(N+1) > f(N).

Proof. f(N+1) - f(N)

$$= 64 \left(2\sum_{n=1}^{N} \frac{1}{n} + \frac{1}{N+1} \right) - \left(\frac{2}{\sqrt{N+1}} \sum_{n=1}^{N+1} \frac{\left| \ln(n/(N+1)) \right|}{\sqrt{n} \cdot max(N+1,n)} \right) \times \left[2\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\left| \ln(m/n) \right|}{\sqrt{mn} \cdot max(m,n)} + \frac{2}{\sqrt{N+1}} \sum_{n=1}^{N+1} \frac{\left| \ln(n/(N+1)) \right|}{\sqrt{n} \cdot max(N+1,n)} \right]$$
$$> 64 \left(2\sum_{n=1}^{N} \frac{1}{n} + \frac{1}{N+1} \right) - \frac{8}{N+1} \left(16\sum_{n=1}^{N} \frac{1}{n} + \frac{8}{N+1} \right) = 0.$$

Main results

Theorem 1 If $a_n \ge 0, b_n \ge 0, n = 1, 2, \mathbf{L}, N$. *N* is positive integer, then $64\sum_{n=1}^{N} a_n^2 \sum_{n=1}^{N} b_n^2 - \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln(m/n)| a_m b_n}{max(m, n)}\right)^2$ $\ge \min_{1\le n\le N} \left\{na_n^2\right\} \min_{1\le n\le N} \left\{nb_n^2\right\} \left[64\left(\sum_{n=1}^{N} \frac{1}{n}\right)^2 - \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln(m/n)|}{\sqrt{mn} \cdot max(m, n)}\right)^2 \right]$ (11) Proof. Let $c_n = \sqrt{na_n}, d_n = \sqrt{nb_n}$, then inequality (11) is translated into

$$64\sum_{n=1}^{N} \frac{c_n^2}{n} \sum_{n=1}^{N} \frac{d_n^2}{n} - \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln(m/n)| c_m d_n}{\sqrt{mn \cdot max(m,n)}}\right)^2$$

$$\geq \min_{1 \le n \le N} \left\{ c_n^2 \right\} \min_{1 \le n \le N} \left\{ d_n^2 \right\} \left[64 \left(\sum_{n=1}^{N} \frac{1}{n} \right)^2 - \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln(m/n)|}{\sqrt{mn \cdot max(m,n)}} \right)^2 \right].$$
(12)

By using Cauchy inequality, we have

$$64\sum_{n=1}^{N} \frac{c_n^2}{n} \sum_{n=1}^{N} \frac{d_n^2}{n} - \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln(m/n)| c_m d_n}{\sqrt{mn \cdot max(m,n)}}\right)^2$$

$$\geq 64\sum_{n=1}^{N} \frac{c_n^2}{n} \sum_{n=1}^{N} \frac{d_n^2}{n} - \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln(m/n)| c_m^2}{\sqrt{mn \cdot max(m,n)}} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{|\ln(m/n)| d_n^2}{\sqrt{mn \cdot max(m,n)}}.$$
(13)

Let $f(c_1, c_2, \mathbf{L}, c_n, d_1, d_2, \mathbf{L}, d_n)$

$$= 64\sum_{n=1}^{N} \frac{c_n^2}{n} \sum_{n=1}^{N} \frac{d_n^2}{n} - \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\left|\ln(m/n)\right| c_m^2}{\sqrt{mn} \cdot max(m,n)} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\left|\ln(m/n)\right| d_n^2}{\sqrt{mn} \cdot max(m,n)}$$

to compute the partial derivatives of a function $f(c_1, c_2, \mathbf{L}, c_n, d_1, d_2, \mathbf{L}, d_n)$ with respect to $c_i \cdot d_i$, and using lemma 1, we have

$$\frac{\partial f}{\partial c_{i}} = 64 \cdot \frac{2c_{i}}{i} \sum_{n=1}^{N} \frac{d_{n}^{2}}{n} - \sum_{n=1}^{N} \frac{2c_{i} \left| \ln(i/n) \right|}{\sqrt{i} \sqrt{n} \cdot max(i,n)} \sum_{n=1}^{N} \frac{d_{n}^{2}}{\sqrt{n}} \left(\sum_{m=1}^{N} \frac{\left| \ln(m/n) \right|}{\sqrt{m} \cdot max(m,n)} \right)$$
$$> \frac{128c_{i}}{i} \sum_{n=1}^{N} \frac{d_{n}^{2}}{n} - \frac{2c_{i}}{\sqrt{i}} \cdot 8i^{-\frac{1}{2}} \sum_{n=1}^{N} \frac{d_{n}^{2}}{\sqrt{n}} 8n^{-\frac{1}{2}} = 0...$$

thus $f(c_1, c_2, \mathbf{L}, c_n, d_1, d_2, \mathbf{L}, d_n)$ is monotone increasing for c_i . In a similar way we can prove that $\frac{\partial f}{\partial d_i} > 0$, and this implies $f(c_1, c_2, \mathbf{L}, c_n, d_1, d_2, \mathbf{L}, d_n)$ is monotone increasing for d_i . We obtain $f(c_1, c_2, \mathbf{L}, c_n, d_1, d_2, \mathbf{L}, d_n)$ $\geq f(\min_{1 \le n \le N} \{c_n\}, \min_{1 \le n \le N} \{c_n\}, \mathbf{L}, \min_{1 \le n \le N} \{d_n\}, \min_{1 \le n \le N} \{d_n\}, \mathbf{L}, \min_{1 \le n \le N} \{d_n\}).$ In view of (13) (12) holds. The theorem is proved

In view of (13), (12) holds. The theorem is proved.

From theorem 1 and lammas 2, we have

Theorem 2 If $a_n \ge 0, b_n \ge 0, n = 1, 2, L, N$. N is positive integer, then

$$64\sum_{n=1}^{N}a_{n}^{2}\sum_{n=1}^{N}b_{n}^{2} - \left(\sum_{n=1}^{N}\sum_{m=1}^{N}\frac{|\ln(m/n)|a_{m}b_{n}}{max(m,n)}\right)^{2} \ge 64\min_{1\le n\le N}\left\{na_{n}^{2}\right\}\min_{1\le n\le N}\left\{nb_{n}^{2}\right\}.$$
(14)

References

- [1] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Gambridge University Press, Gambridge, 1952.
- [2] X. Zhang, Y. Chu, New discussion to analytic inequalities, Harbin institute of technology press,2009.
- [3] M. Gao, B. Yang, On the extended Hilbert's inequality, Proceeding of the American Mathematical Society 126 (1998), no.3, 751-759
- [4] J. Kuang, L. Debnath, On new generalizations of Hilbert's inequality and their applications, Journal of Mathematical Analysis and Applications 245 (2000), no.1, 248-265.

- [5] B. Yang, On a strengthened version of the more accurate Hardy-Hilbert's inequality, Acta Mathematica, Sinica (China) 42 (1999), no.6, 1103-1110.
- [6] B. Yang, On a Base Hilber-type inequality, Journal of Guangdong Education Institute(Science Edition),26(2006), no.3, 1-5.
- [7] B. Yang, A Hilber-type inequality with two pairs of conjugate exponents, Journal of JiLin University (Science Edition),45(2007), no.4, 524-528.
- [8] B. Sun. A Multiple Hilbert type integral inequality with the best contant factor [J]. Journal of Inequalities and Applications, 2007.