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Abstract. The Dirichlet-to-Neumann method is adopted to calculate the band gaps of the 

two-dimensional phononic crystals with different interface conditions. The system is in a square 

lattice which is composed of the solid cylinders embedded in a softer material. The cross sections of 

the inclusions are circular. In a unit cell a linear eigenvalue equation is formulated, from which the 

band gaps can be obtained. A typicla numerical example is taken to analyze and discuss the roles of 

the interface conditions. The results show that  the Dirichlet-to-Neumann method can provide 

accurate results and the different interface conditions have significant effects on the band gaps. 

Introduction 

    In the last years, a great deal of work has been devoted to the study of photonic crystals, which 

consists of  periodic arrays with dielectric materials on small scale of light wavelength. They can 

control the electromagnetic waves because of the existence of band gaps [1–3]. Analogously, the 

phononic crystal is an artificial crystal omposed of two or more elastic materials with different mass 

densities and elastic properties. The research emphasis was the existence of complete or directional 

elastic band gaps, over which there are no elastic waves propagating through the lattice. The complete 

or directional band gaps are helpful in the design of new generations of sound shields, transducers, 

filters, refractive devices such as acoustic interferometers and acoustic lenses, etc. Furthermore, 

phononic crystals are also useful in the design of vibrationless environments for high-precision 

mechanical systems [4-6]. Therefore, The study of phononic crystals has become one of the most 

fast-developing and active fields in acoustics, condensed matter physics, mechanical engineering, 

mechanics, etc [7,8]. 

     So far, many methods have been used to compute the band structures of elastic/acoustic waves in 

phononic crystals. For example, the plane-wave expansion method [9] is widely used to compute the 

band gaps of the phononic crystals, but it has the slow convergence when it deals with the systems of 

very high and very low filling ratios, and cannot consider the interface conditions of the matrix and 

the inclusions. The finite difference time domain method [10] and the finite element method [11] 

have good  convergence in the calculations of phononic crystals, but their formed matrix is large and 

time-consuming.  The multiple-scattering theory method [12] has a larger multipole expansion, and it 

can only treat the cylindrical or spherical inclusions. The wavelet method [13] need adopt suitable 

basis functions and consume more time.  

    The recently developed Dirichlet-to-Neumann (DtN) map  method [14-16] has been used to 

calculate the band gaps of the two-dimensional phononic crystals. This method is based on the 

cylindrical wave expansion, which is an operator that maps the wave field such as the displacement to 

its normal derivative on the boundary of a unit cell. It yields a linear eigenvalue problem, where the 

Bloch wave vector is an eigenvalue. In comparisons with the other methods, the DtN method has 

small matrices and good convergence, and it can treat the different interface conditions between the 

matrix and the inclusion. In this paper we will use the  DtN method to compute the band gaps of  

two-dimensional phononic crystals with soft components under the different interface conditions, and 

analysis the effects of the interface conditions on the band gaps. 
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Wave equations and method 

    The phononic crystal, which is composed solid cylinders embedded in the solid matrix forming a 

square lattice with the lattice constant a , is shown in Fig.1 where the corresponding unit cells and the 

first Brillouin zones are given. The cross-sections of the inclusions are circular. We suppose that  the 

propagation of the elastic waves is limited to the transverse plane. As we know, the governing 

equations describing these time-harmonic wave motions can be expressed as                                            
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Lamé coefficients and mass density of the inclusions and the matrix, respectively; 1j   for the solid 

inclusions ; and 0j   for the solid matrix. 
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Fig.1 (a) is a square lattice; (b) is its corresponding square unit cell and (c) is the first Brillouin zone. 

 

    In a unit cell (Fig. 1(b)), when the matrix and the inclusion smoothly contact, the interface 

conditions can be expressed as the following relations  
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When the matrix and the inclusion perfectly contact, we have the following interface conditions 
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    According to the Bloch theorem, any field quantity p  (e.g. the displacements and stresses) have 

the following relations      

                                                                                                   ,                                              (4) 

in which k  is a Bloch wave vector; 1i   .  ,p x y  is a  periodic function.   

    Here, we adopt the  DtN method to compute the band gaps of the aboved problems. The 

descriptions of  the method can be found in Ref. [15]. 

M 

  
X 

3  
1  

2

 

4  

1D

0D

0  
0D  

1D  

r 
  

Advances in Engineering Research, volume 129

106



 

Numerical examples 

 Now, we consider a square lattice of Au cylinders embedded in the rubber matrix. The density and 

the wave velocities are: 3

1 19500kg/m  , 
,1 3360m/slc   and 

,1 1239m/stc   for Au; and 3

0 1000kg/m  , 

,0 1830m/slc   and 
,0 500m/stc   for the rubber. The lattice constant is 1.0mma  and the filling fraction of 

the rubber is 0.21f  . In the computation, we choose 8 discretized nodes on each side of the matrix 

which can give convergent results. The band structures with the smooth interface condition (2) are 

plotted in Fig. 2 by the solid scattered dots. At the same time, the band structures with the perfect 

interface condition (3) are shown in the figure by the hollow scattered dots. From Fig.2 we can find 

that except the third band all the bands for the smooth interface are lower than those for the perfect 

interface at the given frequency interval. Because the third band rises, a complete band gap [0.411, 

0.617] exists between the second and third bands for the smooth interface, which exists between the 

third and fourth bands for the perfect interface. In contrast with the band gaps obtained by the two 

interface conditions, it is shown that the complete band gaps for the smooth interface (2) is lower and 

narrower than that for the perfect interface (3). Based on the material parameters, as the rubber is a 

softer material; the shear stress is not easy to be transmitted, especially when the interface is smooth. 

This example proves that the DtN map method can compute the band structures of the 

two-dimensional phononic crystals with softer components under the different interface conditions 

and give accurate results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                            

Fig. 2 Band structures of the Au/rubber phononic crystal in a square lattice. The solid and 

hollow scattered dots represent the results of the smooth interface condition and the perfect 

interface condition, respectively. 

Conclusions 

    The Dirichlet-to-Neumann map method is applied to calculate band structures of the 

two-dimensional phononic crystal with the smooth and perfect interface conditions. The system is 

composed of Au and rubber materials, in which rubber is a softer material. By the computation on the 

band structures of the system, the  perfect interface opens a complete band gap between the third and 

fourth bands, while the smooth  interface opens a complete band gap between the second and third 

bands. Additionally, the band gap for the smooth interface is lower and narrower. Therefore, the 

interface conditions have significant effects on the band gaps.  
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