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Abstract. Based on the regression analysis for 1918 seismic records, ductility demand probabilistic 
relationship with given earthquake intensity is formulated, and corresponding Bayesian network is 
established. With the given observation of earthquake intensity, the ductility demand posterior 
distribution is updated by using Markov Chain Monte Carlo method, thus the computation of the 
ductility demand is localized. Case study shows how the earthquake intensity parameters and the given 
observed values effect on the calculation result. 

Introduction 
Pacific Earthquake Engineering Research Center of USA has proposed the guiding principles for the 
probabilistic assessment of structural performance[1]: Three random variables: Intensity measure( IM ), 
Damage Measure( DM ) and Decision Variables( DV ), are adopted, and the assessment is break down 
into three parts: probabilistic seismic hazard analysis ( )IMλ  , probabilistic seismic demand analysis 

( | )G DM IM  and probabilistic structural capacity analysis ( | )G DV DM . 
The guiding principles proposed by the PEER can be considered as a simplified three-level causal 
network described by probabilistic relations, that is, Bayesian network. The Bayesian network is a 
topological structure which composed of a directed acyclic graph and associated probability 
distribution functions [2]. As an artificial intelligence technique, it has been widely used for describing 
complex causal relationships. In the field of civil engineering, its applications are usually in the form of 
Bayesian inference to process single-level causal relationship [3-5]. 

In this paper, based on the regression analysis for 1918 seismic records, an intensity measure about 
seismic spectral characteristic, which has great effect on ductility demands, is constructed, and the 
ductility demand conditional probability distribution ( | )G DM IM  is established based on it. One 
important feature of Bayesian network is that posterior distribution can be obtained given observed 
values. In this paper, collected seismic intensity parameters of specific region are used as observed 
values to update the posterior distribution of seismic ductility demand, thus realize the localization of 
seismic ductility demand calculation.  

Analysis of Influencing Factors of Structure Ductility Demand 
The structure ductility demands are affected by two aspects: the structure itself and the seismic actions. 
For the calculation of structure seismic ductility demands, the seismic actions have great uncertainty, 
while the uncertainty of structural characteristics is relatively small. So in the following analysis, the 
structural characteristic parameters are treated as constants rather than as variables. 

Reasonable selection of seismic intensity measures is the basis for establishing the conditional 
probabilistic relationship ( | )G DM IM  and reducing the dispersion [6, 7]. In this paper, Peak Ground 
Acceleration (PGA) is used as intensity measure, and through regression analysis for 1918 ground 
motion records, another new earthquake intensity measure PGAF  is constructed and the probabilistic 
relationship of  Tη µ− −  is established. 
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Probabilistic Relationship of Tη µ− −   
Consider the following single degree of freedom system: 
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In which, ξ  is the damping ratio, ( )q u is the normalized resilience model, ( )tτ is normalized ground 
acceleration time history, T  is the first structural period and  η  is the yield strength coefficient. The 
maximum value of µ  obtained by time-history analysis based on the above equation is the structural 
ductility demand for specific ground motion recorder. For the simplicity, bilinear model with post yield 
stiffness coefficient 0.05 is adopted as the resilience model, and the damping ratio is 0.05. 

Nonlinear time-history analysis is carried out for SDOF systems with T  varied from 0.1 to 5s and 
yield strength coefficient η  varied from 0.1 to 1.2. Based on these time-history analysis, simplified 
probabilistic relationship of Tη µ− − can be obtained by multivariate nonlinear regression: 
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In which, 0µ  can be seen as the ductility demand with 0.1s structural period and 0.1 of yield strength 
coefficientη . Where 1r  and 2r  can be seen as decreasing coefficients of structural period and yield 
strength coefficient. The fitting results of 1918 ground motion records show that the coefficient of 
decision of Equation 2 is more than 0.9, so Equation 2 can be considered as a good reflection of the 

Tη µ− −  relationship. 
Seismic intensity measure PGAF  
In the Equation 2 of this paper, the value range of the parameters 0µ  is very large, which can be seen as 
an objective reflection of the huge difference of  different spectral characteristics of earthquake. Unlike 

the intensity measures such as PGA, 0µ cannot be 
measured, so it is necessary to construct a seismic 
spectrum characteristic parameter so as to relate with it. 
In this paper, such parameter directly related to 0µ  is 
constructed with considering the following two aspects: 

First is to consider the velocity pulse characteristics. 
Related studies have shown that high energy velocity 
pulse will significantly increase the structural 
displacement [8, 9]. The velocity pulse can be represented 
by /PGV PGA . As shown in Fig.1, 0µ  is related to 

/PGV PGA , with increase of /PGV PGA , the dispersion of 
0µ  is also increased. Therefore, 1918 records are divided 

into three groups: less than 0.05 (411), 0.05 to 0.10 (942), 0.1 to 0.15 (565). 
Second is to define a spectrum characteristic quantity which can directly reflect the parameter 0µ   

and can be measured directly. This quantity is defined as peak ground acceleration ( PGAF ) of normalized 
acceleration time history ( )tτ  obtained after low pass filtering (2.9Hz). Fig.2 shows that the two 
parameters are closely related. The regression relationship is shown below: 

             
0 (1 )( )PGAaF bµ δ= + +

                                                                  
(3) 

In which, δ is random-valued coefficient of variation, a and b  is constant linear regression 
coefficients. The values of the coefficients for different groups are shown in table 1. 
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Fig.1 /PGV PGA  vs 0µ  
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(a) group 1 (b)  group 2 

Fig.2 Relationship between FPGA and µ0 

(c)  group 3 

 

Bayesian network model 
In this paper, Bayesian network, as shown in fig.3, is constructed to calculate the seismic ductility 
demand distribution. The prior distribution and conditional distribution or values of the Bayesian 
network nodes and the parameters involved are shown in Table 1. 

The node “exceeding probability” in the 
network represents exceeding probability of 
rarely occurred strong earthquake, it can be 
regarded as a random variable varied between 
0.02~0.03. "Seismic intensity ld" obeys the right 
truncated distribution of seismic intensity under 
given exceeding probability. Shadow node “mean 
value of peak acceleration” is a non-probabilistic 
node, which can be obtained by calculating with 
the given seismic intensity. The node "PGA 
coefficient of variation" is a priori node, and the 
average coefficient of variation is 0.7. "Peak 
acceleration PGA" follows the extreme value 
type I distribution under a given mean coefficient 
of variation [10]. The parameter PGAF  uses the 
mean and the variance as its priori nodes. 

When there is no observation value, the Monte Carlo simulation of Bayesian network can be used to 
calculate the prior distribution of ductility demand. When there are observed values of ground motion 

Table 1: Parameter values and distributions of 
Bayesian network  

parameter name Distribution type or value 
Exceeding probability log ( 3.45,0.58)norm −  

Earthquake intensity ld Extreme value type III truncated 
distribution 

PGA coefficient of 
variation 

log ( 0.36,0.10)norm −  

PGA  Mean value 10log 2 0.0110ld ⋅ −  
PGA Extreme value type I distribution 

PGAF  Mean value Logarithmic normal distribution 

PGAF  variance Logarithmic normal distribution 

PGAF  Logarithmic normal distribution 

0µ  Formula 3 

Ductility demand µ  Formula 2 

δ  

Group 1： (2.20 3,0.18)norm e −  
Group 2： (4.26 4,0.11)norm e −  
Group 3： (1.83 4,0.10)norm −  

a  
Group 1：318.05 
Group 2：342.93 
Group 3：312.60 

b  
Group 1：8.11 
Group 2：-2.90 
Group 3：5.97 

1r  
Group 1： (1.60,0.21)norm  

Group 2： (35.51,0.04)gamma  

Group 3： _ (1.04,0.13)extm typeI  

2r  
Group 1： (1.30,0.17)norm  

Group 2： (1.37,0.08)norm  

Group 3： (1.38,0.05)norm  

Exceeding
probability ld

seismic
intensity

 PGA mean PGA coefficient
of variation

PGA

mean variance

Ductility
demand

pgaF pgaF

pgaF

µ

0µ

 
Fig.3 Baysian network 
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record of specific region, all the random variable nodes in Bayesian network can be updated to 
posterior distribution. Given PGAF , the posterior distribution of Fµ   and Fσ  can be expressed as: 

                                                                        (4) 

MCMC algorithm 
The denominator of the Bayesian posterior probability is usually a complicated multi-dimensional 
integral as shown in Equation 4, it’s difficult to solve by using the analytical method or the general 
Monte Carlo numerical simulation, therefore, Markov Chain Monte Carlo simulation is used to solve 
the problem. 
Markov chain and MH algorithm 
Markov chain is a sample generation sequence which the current value of the variable depends only on 
the value at the previous time and does not depend on that at other time. The probability of shifting 
from one state value to another is called the transition probability P . If the Markov chain is ergodic, 
there must be a stable static distribution *π  which meets the relationship of * *Pπ π= . 

With the posterior probability being seen as the stable static distribution probability of the Markov 
chain, the Metropolis-Hasting algorithm generates sampling sequence as follows: 
(1) Starting from the initial value 0x ; 
(2) According to the current value tx  , candidate sample *x   is generated according to the jump 
distribution *( | )tq x x  
(3) The acceptance rate α   of candidate samples is calculated as following: 

                                   
                                                                            * *
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In which, ( )f x is the kernel function of posterior probability. 
(4) Accept the candidate sample with probability α , Return to step 2. 

The algorithm eventually converges to the static distribution, that is, posterior distribution. 
Convergence diagnosis 
The entire MCMC simulation consists of sampling and testing. Since the Markov chain does not reach 
the static distribution at the beginning, the samples generated at the beginning must be discarded, which 
is called the burn-in period. Since the sample is generated based on the previous sample, the correlation 
of the sample sequence is large, so the periodic interval sampling method is used to reduce the 
correlation. 

There are a lot of methods to check the convergence of MCMC algorithm [11-13]. The commonly 
used methods include Geweke test and Raftery-Lewis test. The Geweke test is mainly used to verify 
the convergence of the sample moments. Raftery-Lewis test provides more detailed information 
needed for sampling convergence: by converting the Markov process at the time of sampling into a 0-1 
binarized Markov process, the required length of the burn-in period, the total sampling length, and the 
thinning period is calculated. In this paper, both test methods are used in MCMC simulation. 
The computational architecture of this paper 
The MCMC algorithm adopted in this paper includes three stages: 
(1) Adjustment stage. In this stage, the initial sample and the proposed distribution parameters are 
adjusted. Simulated annealing method is used to adjust the parameters of the proposed distribution. 
(2) burn-in and sampling stage. In this stage, Metropolis-Hasting algorithm is used for sampling. 
(3) Convergence diagnostic stage. Raftery-Lewis test was used to estimate the length of the burn-in 
period, the total sampling length, and the thinning period. Then returns the second stage to iterate until 
it passes the Geweke test. 
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Case study 
A structure is simplified by PUSHOVER analysis as a SDOF system: the restoring force model is 
bilinear, the yield stiffness ratio is 0.05, the mass is 61 10× kg, the damping ratio is 0.05, the period is 
1.10s, the yield strength is 1738kN, and the yield displacement is 53.426mm. Consider the structure 
ductility demand for seismic fortification target of “No Collapsing in the Strong Earthquake” for 8 
degree of earthquake intensity. 

 Assuming that the seismic velocity pulse meet the condition of third group, that is, 
/ [0.10,0.15]PGV PGA∈ . In the absence of observations, the prior distributions of the nodes of interest 

are shown in Table 2. In table 2, the mean value of  PGAF  obeys the logarithmic normal distribution  
with the mean value of 0.5 and the coefficient of variation of 0.1. The 50-years exceeding 

probability   of rarely occurred strong earthquake obeys log normal distribution with a mean value of 
0.025 and a coefficient of variation of 0.1. When PGAF   and PGA  variation coefficient distributions 
changes while mean value of  that are constant distributions, following conclusions can be obtained 

from table 2: 
1. When the variability of PGA  and PGAF  decreases, 
the variability of ductility demand decreases 
accordingly, especially when the coefficient of 
variation of the two is about 0.2, the coefficient of 
variation of ductility requirement is less than 1. 
2. The variability of ductility demand  µ  is more 
sensitive to the variability of  PGA  than that of PGAF . 
3. The mean value of the ductile demand  µ  appears 
to be affected by the variability of PGA . 

Assuming that: distribution of exceeding 
probability is shown in Table 1; the mean value of 

the distribution of the standard deviation of PGA  is 0.7 and the standard deviation is 0.1; the mean 
value of  PGAF  obeys the logarithmic normal distribution with the mean value of 0.5 and the coefficient 
of variation of 0.1, its variance obeys the logarithmic normal distribution with the mean value of 0.1 
and the coefficient of variation of 0.1. Now 
consider the situation with observed values: the 
ground peak acceleration  PGA  is 8.8396 and 
9.4864;  PGAF  are 0.8425 and 0.8706. 

The prior distribution and posterior 
distribution of the nodes of interest are shown 
in Table 3. 

Because the prior distribution of PGA  has a 
large variance, it shows a good “compatibility” 
with the observed values. The changes of its 
posterior distribution, especially the changes of 
quintile value are not significant; on the other 
hand, the prior distribution of  PGAF  has a large deviation from the observed values; however, the 
posterior distribution corrects this deviation. As can be seen from the table 3, posterior distribution of   
has a significant "right shift" compared with the prior distribution, which indicates that due to the 
addition of the observed value,  0µ  should have a larger value. The distribution of the ductility demand  
µ  is also shifted to the right of the prior distribution, and the coefficient of variation is reduced from 
1.28 to 1.16. 

 

Table 2 Node information of Bayesian 
network 

mean value of 
CV 

PGA  0µ  
µ  

mean 
variance 

mean 
variance 

mean  
variance 

0.7,0.7 5.8517 
4.6845 

162.4579 
110.6908 

3.0456 
4.9100 

0.7,0.2 5.8286 
4.7373 

161.3827 
38.3434 

3.0000 
4.0323 

0.2,0.7 5.8161 
2.1785 

165.2831 
121.0101 

2.7468 
2.9565 

0.2,0.2 5.7963 
2.1189 

162.1613 
38.2385 

2.6776 
1.9402 

Note: Mean value of CV are PGA  and PGAF from left to right. 

Table 3 Node information of Bayesian network 

Node prior distribution 
mean variance Quantile 0.5 Quantile 0.95 

PGA  5.810 4.616 4.882 14.261 
0µ  162.33 27.385 160.29 210.90 

µ  3.017 3.863 1.853 9.788 

Node Posterior distribution 
mean variance Quantile 0.5 Quantile 0.95 

PGA  5.547 4.094 4.743 13.168 

0µ  227.60 35.76 225.40 290.23 
µ  3.90 4.510 2.517 12.273 

Advances in Engineering Research, volume 129

307



 

Conclusion 
Based on the 1918 collected ground motion records, the nonlinear time-history analysis of the SDOF 
systems with different yield strength coefficient and periods are performed. By means of regression 
analysis, a new parameter PGAF  is constructed to describe the influence of seismic spectral 
characteristics on ductility demand. On this basis, the corresponding Bayesian network is formed. The 
Markov Chain Monte Carlo (MCMC) simulation method is used to update the posterior distribution of 
the ductility demand under the given earthquake intensity observed values. 

Case study shows that intensity parameters, PGAF   and PGA   all have great influence on seismic 
ductility demand, and the Bayesian network constructed based on them can better reflect the 
quantitative logic relationship between ductility and intensity. The Bayesian network can adjust the 
posterior distribution according to observed values, thus "localize" the ductile demand calculation. 
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