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Abstract

Feature selection is used as a preprocessing step in the resolution of many problems using machine learn-
ing. It aims to improve the classification accuracy, speed up the model generation process, reduce the
model complexity and reduce the required storage space. Feature selection is an NP-hard combinatorial
optimization problem. It is the process of selecting a subset of relevant, non-redundant features from the
original ones. Among the works that are proposed to solve this problem, few are dedicated for intru-
sion detection. This paper presents a new feature selection approach for intrusion detection, using the
Biogeography Based Optimization (BBO) algorithm. The approach which is named Guided Adaptive
Binary Biogeography Based Optimization (GAB-BBO) uses the evolutionary state estimation (ESE) ap-
proach and a new migration and mutation operators. The ESE approach we propose in this paper uses the
Hamming distance between the binary solutions to calculate an evolutionary factor f which determines
the population diversity. During this process, fuzzy logic is used through a fuzzy classification method,
to perform the transition between the numerical f value and four evolutionary states which are : conver-
gence, exploration, exploitation and jumping out. According to the state identified, GAB-BBO adapts
the algorithm behavior using a new adaptive strategy. The performances of GAB-BBO are evaluated
on benchmark functions and the Kdd’99 intrusion detection dataset. In addition, we use other different
datasets for further validation. Comparative study with other algorithms is performed and the results show
the effectiveness of the proposed approach.

Keywords: NP-hard combinatorial optimization problem, biogeography based optimization, evolutionary
state estimation approach, Hamming distance, Feature selection, intrusion detection

1. Introduction

With the rapid progress in computer technologies,
the traditional intrusion prevention systems alone
such as firewall, encryption, antivirus software and
secure network protocols, etc. have failed to provide
robust protection against increasingly sophisticated
attacks. Intrusion detection systems (IDS) are a sec-
ond wall of defense where the events taking place in
networks or computer systems are analyzed to detect

whether they constitute normal activities or poten-
tial threats. Building an IDS relies on the following
main steps: data collection, data preprocessing, in-
trusion detection and response 1.

Recently, machine learning techniques 2 are
widely used to build effective IDS. The learning
task uses a training data to induce a model which
describes normal or attacks behaviors. When the
model is generated, it can classify raw data into the
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corresponding classes (normal or a specific type of
attack). The presence of irrelevant and redundant
features in raw data may confuse the classifier lead-
ing to the deterioration of the detection performance.
For this reason, Dimensionality Reduction (DR) has
become a necessary step to go through before the ac-
tual training process. It aims to improve the classifi-
cation accuracy, speed up the model generation pro-
cess, reduce the model complexity and reduce the
required storage space. DR is performed by Feature
Extraction (FE) or Feature Selection (FS). FE is the
process of generating a set of new features from the
original ones (more compact and discriminant than
the original ones). FS is the process of removing
irrelevant and redundant features from the original
ones. In contrast to FE, FS maintains the original
features which is more useful for applications need-
ing model interpreting and knowledge extraction 3.
In intrusion detection, the semantic of the features
is important for subsequent diagnosis of the cause
of the attacks. In order to preserve the model in-
terpretability and to improve the accuracy, we have
opted in this work for feature selection.

Feature selection problem 3 is an active area of
research in machine learning that has attracted a lot
of attention. It is the process of selecting a subset of
d relevant, non-redundant features from D original
ones (d < D). FS consists in two important steps:
subset search and subset evaluation. In the subset
search step, candidate feature subsets are selected
for the evaluation. In the subset evaluation step, the
quality of the selected feature subsets is measured.
According to the evaluation function, FS is mainly
categorized in three categories: wrapper, filter and
embedded approaches. A wrapper approach uses a
learning algorithm to measure the learning perfor-
mance obtained by each one of the generated feature
subsets. The approach gives better accuracy. How-
ever, it is computationally expensive. A filter ap-
proach uses intrinsic characteristics of the training
data to define an evaluation function. The evalua-
tion function is used to evaluate each candidate fea-
ture subset instead of a learning algorithm. The filter
approach is faster but less accurate than the wrapper
approach. An Embedded approach performs feature
selection within the learning algorithm. That is, the

final result is a predictive model generated using a
subset of features. The embedded approach is ac-
curate and fast. However, the feature selection pro-
cess it performs is not a separated step that can be
combined with any learning algorithm (lack of flex-
ibility). In this work, we have opted for the wrap-
per approach because of its accuracy and its flexi-
bility. It is true that the wrapper approach suffers
from its high computational cost. However, the time
consumed by the FS algorithm does not affect the
response time in the intrusion detection (feature se-
lection is a preprocessing step which is not included
in the intrusion detection process).Furthermore, the
wrapper approach is considered very easy to paral-
lelize, which will cope with the issue of the compu-
tation speed 4.

Finding the optimal feature subset is an NP-hard
combinatorial optimization problem 4 with 2D − 2
subsets to explore. Therefore, for large-sized prob-
lem, the use of heuristics methods is required. In the
wrapper FS problem providing a balance between
exploration and exploitation is highly needed to find
promising areas of the search space. To reach this
balance, the use of adaptive metaheuristics is worth-
while. Biogeography Based Optimization (BBO) al-
gorithm 5 is a powerful metaheuristic successfully
applied in many applications 6. It offers a primi-
tive adaptation mechanism which is improved in the
approach proposed in this paper through a dynamic
behavior adaptation leading to improvement of the
exploitation and exploration balance. For all these
reasons, BBO seems to be a good approach for the
wrapper FS problem.

In this paper, we propose a new wrapper FS
method using BBO. The proposed method which
is named Guided Adaptive Binary Biogeography
Based Optimization (GAB-BBO) uses new migra-
tion and mutation operators. Furthermore, it uses
a modified Evolutionary State Estimation (ESE) ap-
proach to dynamically adapt the algorithm behavior.
The idea of using ESE approach 7 to improve BBO
algorithm has, best to our knowledge, not yet ex-
plored. The ESE approach analyzes the population
diversity so as to identify the evolutionary states of
the algorithm. Four evolutionary states (exploration,
exploitation, convergence and jumping out) are de-
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fined based on an evolutionary factor f. The map-
ping between the numerical f value and the afore-
mentioned evolutionary states is performed using
fuzzy logic 8. The four different states are viewed
as linguistic variables and the degree of membership
of the f values in each one of these states is given by
a specific membership function. According to the
identified evolutionary state, GAB-BBO adapts the
behavior of the algorithm. The algorithm parameters
are dynamically adjusted to improve the exploration
and the convergence abilities. Also, a Weighted Lo-
cal Search (WLS) is used to improve the exploitation
ability.

The rest of this paper is structured as follows:
section 2 presents an overview of the existing fea-
ture selection methods. Section 3 is dedicated to an
overview of BBO. Section 4 explains the proposed
approach. Section 5 presents the experimental re-
sults. Finally, conclusion is given in section 6.

2. Overview of Feature Selection Methods

Feature selection is a necessary preprocessing step
in many machine learning applications. It is an
NP-hard combinatorial optimization problem 4. For
large-sized problem, the exhaustive search of all
subsets is computationally impractical which makes
the use of heuristics methods unavoidable.
Most recently, population-based algorithms such as
Genetic Algorithm (GA), Particle Swarm Optimiza-
tion (PSO) and Ant Colony Optimization (ACO)
have been used to solve the feature selection prob-
lem. Forsati et al.9 proposed a new version of ACO
which was named Enriched Ant Colony Optimiza-
tion (EACO) and applied it to the feature selec-
tion problem. The main idea in EACO is to em-
bed the edges that were previously traversed in the
earlier executions. Moayedikia et al.10 introduced
a weighted bee colony optimization for the feature
selection (FS-wBCO). The authors used global and
local weights to measure the importance of the fea-
tures and also a new recruiter selection procedure.
Khushaba et al.11 proposed a Differential Evolu-
tion (DE) based feature selection algorithm. The
generated feature subsets had a predefined size. A
roulette wheel weighting scheme and a statistical

repair mechanism were used to replace the dupli-
cated features in the feature subsets. Al-Ani et al.12

also used the DE algorithm for the feature selec-
tion. Here all features were distributed in a set of
wheels to improve the exploration ability. Unlike the
population-based methods mentioned above, BBO
algorithm was not widely used in the feature selec-
tion problem. Earlier version of BBO based feature
selection was introduced by Yazdani et al.13. The
authors proposed two versions with different solu-
tion encoding (binary and integer) and modified op-
erators.
In intrusion detection more attention is given to fea-
ture extraction and classification and less research
works have been proposed to solve the feature se-
lection problem14. Among these works, we can
mention the work of Gao et al.15 where ACO algo-
rithm and SVM classifier were combined to find the
most discriminative features in intrusion detection
dataset. In the work of Eesa et al.16 a new algorithm
named CuttleFish (CFA) was applied to the FS prob-
lem.

3. Overview of Biogeography Based
Optimization (BBO)

BBO algorithm was introduced by Dan Simon in
2008 5. It was inspired by studies on the geo-
graphical distribution of biological species. Species
can migrate between islands which are called habi-
tats each of which represents a geographical area
where species can live. The quality of life in each
habitat is determined by a Habitat Suitability In-
dex (HSI). Habitats that are suitable to the residence
of species have a high HSI. The habitability is de-
termined by the Suitability Index Variables (SIV).
There are many factors in the real world which make
a habitat more suitable to reside than others like rain-
fall, crop diversity, diversity of terrain, etc. Habitats
with high HSI tend to have high number of species
with high emigration rate and low immigration rate
because they are saturated with species, while those
with low HSI tend to have fewer species with low
emigration rate and high immigration rate. In BBO
metaheuristic, Dan Simon uses the following anal-
ogy:
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• A habitat is analogous to a solution.
• A set of habitats is analogous to a population of

solutions and the SIV describes the component of
the solution.

• The HSI is analogous to the solution quality.
Good solutions have high HSI and bad solutions
have low HSI.

• The migration of species between habitats is anal-
ogous to the process of sharing SIV of good so-
lutions with bad ones to improve their quality.
This mechanism is called migration and it is of
two types: immigration and emigration. For each
habitat (Hi), in each iteration, the immigration rate
λ and emigration rate µ are dynamically updated
based on the fitness of the habitat as given in Eqs.
(1) and (2)

λi = I
(

1− K(i)
N

)
(1)

µi = E
(

K(i)
N

)
(2)

where I and E are a user-defined maximum rates
of immigration and emigration, respectively, N is
the number of habitats in the population and K(i)
is the rank of the ith habitat (Hi) according to its
fitness (all habitats are sorted based on the fit-
ness from the worst fitness to the best one). Good
habitats have high value of µ and low value of
λ . Thus, they have high probability to share their
SIV with others and low probability to accept SIV
from them. On the other hand, poor habitats have
low value of µ and high value of λ . Thus, they
have high probability to replace their SIV with
others and low probability to share them.

• The suddenly change in the SIV of the habi-
tats, because of some occurring events like nat-
ural catastrophes, disease, etc., is analogous to the
SIV mutation mechanism. The mutation aims to
increase the exploration ability of the algorithm. It
replaces the SIV of a selected habitat Hi by a ran-
domly generated one. This mutation is performed
according to a mutation rate mi given in Eq. (3).

mi = Mmax

(
1− Pi

Pmax

)
(3)

where Mmax is a user-defined maximum mutation
probability, Pi is the probability of having a rank
k(i) and Pmax = Pj where j=arg max Pi, i=1,...,n.

The pseudo-code for BBO is given in algorithm 1.

Algorithm 1: BBO.
1 Initialize the population (random set of habitats): Hi (i =

0,1... P-1) ;
2 Initialize the BBO parameters: E, I, N, Mmax and elitism

parameter;
3 begin
4 Rank habitats;
5 Compute corresponding HSI, µ , λ values;
6 while t < Max number of iterations do
7 for each habitat Hi (i = 0,1... P-1) do
8 //Migration;
9 Select Hi with probability based on λi;

10 if Hi is selected then
11 Select H j with probability based on µ j;
12 if H j is selected then
13 Randomly select an SIV from H j;
14 Replace a random SIV in Hi with

the one from H j;

15 //Mutation;
16 Compute Pi and mi;
17 for each SIV in Hi do
18 if current SIV is selected based on mi

then
19 Hi(SIV)←random generated SIV;

20 Rank habitats;
21 Compute corresponding HSI, µ , λ values;
22 Update the global best habitat (Gbest) and the

elected habitats list;
23 Replace bad habitats by the so far elected habitats;

24 end

4. Proposed Approach

The approach we propose which is named Guided
Adaptive Binary Biogeography Based Optimization
(GAB-BBO) is an improvement of the original BBO
algorithm 5 applied to the feature selection problem.
In the following subsections, we describe the main
components of GAB-BBO. The general steps of this
approach are depicted in algorithm 2.

4.1. Solution Representation

The solution for the feature selection problem is rep-
resented by a binary vector of dimension D, where
each element is equal to 1 if the corresponding fea-
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ture is selected and 0 otherwise (D being the total
number of features).

In GAB-BBO algorithm, the search space is
constituted by a set of habitats. Each habitat (Hi)
corresponds to the binary vector with D SIV. Each
SIV corresponds to a feature and has the values
1 (selected feature) or 0 (unselected feature). For
example, Fig.1 describes a habitat with number of
features D=10 where f3, f4 and f8 are the selected
features. The total number of values equal to ’1’
in the binary vector corresponds to the number of
selected features. In GAB-BBO this number is au-
tomatically determined and not fixed by a threshold
value. Note that, in the sequel, solution and feature
will refer to habitat and SIV, respectively.

Fig. 1. solution representation

4.2. Proposed Evolutionary State Estimation
(ESE) Approach

In this paper, we propose to modify the ESE ap-
proach 7 and use it to dynamically adapt the behavior
of the BBO algorithm. ESE approach analyzes the
population distribution information so as to identify
the evolutionary state of the algorithm. In each it-
eration, the mean Hamming distance between each
solution and the rest ones is calculated to estimate
one of the four evolutionary states namely: explo-
ration, exploitation, convergence and jumping out.
According to the identified state, an adaptive strat-
egy is applied. We describe the details of the main
steps of this process as follows:
Step 1: calculate the mean Hamming distance (di)
between each habitat Hi and the rest ones as given in
Eq. (4).

di =
1

N−1

N

∑
j=1, j ̸=i

HD(Hi,H j) (4)

where N is the population size. In this equation, we
propose to use the Hamming Distance (HD) instead
of the Euclidean distance used in 7. HD between two

binary vectors is the number of the different compo-
nents.
Step 2: determine the population diversity using an
evolutionary factor f . To compute this factor, we
first compare all the calculated distances (di), and
then determine the maximal (dmax) and the minimal
(dmin) distances. The evolutionary factor f is defined
as given in Eq. (5).

f =
dg−dmin

dmax−dmin
∈ [0,1] (5)

where dg denotes di associated to the global best
habitat.

Step 3: classify the evolutionary factor f by a fuzzy
classification method into one of the four evolution-
ary states: exploration, exploitation, convergence
and jumping out. Fig. 2 shows the fuzzy set mem-
ber ship functions used to classify f values.

Fig. 2. Fuzzy membership functions used to identify the
different evolutionary states

The obtained f value is mapped into the mem-
bership functions which give the corresponding
state. The small values of f (S1) describe the con-
vergence state, the medium small values of f (S2)
describe the exploitation state, the medium large
values of f (S3) describe the exploration state and
the large values of f (S4) describe the jumping out
evolutionary state. To remove uncertainty when
falling in overlapping regions, we use the following
ideal sequence of states: exploration, then exploita-
tion, then convergence, then jumping out.

Step 4: according to the evolutionary state identi-
fied, we apply new adaptive strategy. The treatments
in each evolutionary state are defined as follows:
In the exploration state, we set Mmax parameter
value to 0.9 (large value) so as to increase the mu-
tation probability, leading thus to great exploration.
Moreover, we set E and I parameters values to 0.2
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Algorithm 2: GAB-BBO.
1 Initialize the population (random set of habitats): Hi (i = 1,2... p)=rand (0 or 1) ;
2 Initialize the BBO parameters: E, I, N, Mmax and elitism parameter;
3 begin
4 Rank habitats ;
5 Compute corresponding HSI, µ , λ values;
6 while t < Max number of iterations do
7 for each habitat Hi (i = 1,2... p) do
8 apply the proposed binary guided migration;
9 apply the proposed binary mutation;

10 apply the proposed ESE approach:
11 - calculate the mean Hamming distance (di) between each habitat Hi and the rest ones.;
12 - sort all the obtained distances di,and determine dmax,dmin,dg;
13 - compute the evolutionary factor f ;
14 - use f value to identify the evolutionary state;
15 - apply the new adaptive strategy :;
16 if exploration state then Mmax=0.9, E=0.2, I=0.2;
17 if exploitation state then apply the weighted local search procedure;
18 if convergence state then Mmax=0.1, E=0.99, I=0.99;
19 if jumping out state then replace current population by a new random one;
20 Rank habitats ;
21 Compute corresponding HSI, µ , λ values;
22 Update the global best habitat and the elected habitats list ;
23 Replace bad habitats by the so far elected habitats;

24 end

(small value) so as to decrease the migration proba-
bility leading so to less exploitation. In this way, the
algorithm searches in new regions.
In the exploitation state, we apply a Weighted Local
Search (WLS) procedure to each habitat in the pop-
ulation so as to increase the exploitation ability of
the algorithm.
In the convergence state, we decrease Mmax value to
0.1 and increase E and I values to 0.99. This will
guide the habitats to the global best solution which
allows a faster convergence.
In the jumping out state, we replace the current pop-
ulation by a new one that is randomly generated.
This will jump the population toward a new region
faster. We note that the adaptive strategy we pre-
sented above is mainly based on two treatments.
The first one (parameter update) is used in the ex-
ploration and the convergence states whereas the
second one (weighted local search) is used in the
exploitation state. In what follows, we give some
details about these two treatments.

4.2.1. Parameter Update

Parameters E, I and Mmax influence widely the
choice of the global or the local search in the search

process. The idea behind the adaptive strategy is
to dynamically modify these parameters according
to the population distribution information, which is
collected during each iteration, leading so to a dy-
namic behavior adaptation of GAB-BBO. Explo-
ration is favored by high Mmax and low E,I values
whereas convergence is favored by the reverse.

4.2.2. Weighted Local Search (WLS)

The proposed local search WLS attempts to enhance
the quality of the habitat through the probabilis-
tic transformation of SIV (features). We associate
to each SIV a weight that measures its importance
degree in the construction of good feature subsets.
This means that SIV having a high importance de-
gree contributes to produce better solutions. This
weight is adaptively adjusted according to informa-
tion which is collected during the search process.
For each SIVk (k=1...D), the algorithm stores the fol-
lowing information :

• NbSelk is the total number of habitats that have
SIVk =1 (selected feature).

• FitSelk is the summation of the fitness value of all
habitats that have SIVk =1
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• NbUnSelk is the total number of habitats that have
SIVk =0 (unselected feature).

• FitUnSelk is the summation of the fitness value of
all habitats that have SIVk =0

Using this information, WLS calculates the
weight of each SIVk as given in Eq. (6) and the nor-
malized weight as given in Eq. (7).

W (SIVk) =
FitSelk
NbSelk

/
FitUnSelk
NbUnSelk

(6)

NW (SIVk) =
W (SIVk)−Wmin

Wmax−Wmin
(7)

where Wmax and Wmin are the maximum and the min-
imum weights, respectively. The weight which is
calculated in Eq. (6) was proposed for a Bee Colony
Optimization (BCO) algorithm 10 to measure the ac-
ceptance degree of each source food and to compute
the loyalty assessment. However, the authors use
it in a different context than the one we propose.
Moreover, they consider only the solutions of the
current iteration and do not consider those from the
previous iterations. SIVk that has high weight value
is considered more important. So the corresponding
feature has high probability to be selected (transform
SIVk value to 1). On the other hand, SIV that has
low weight value is considered less important. So
the corresponding feature has slight probability to
be selected (transform SIVk value to 0). The trans-
formations are performed as follows:

1 for each SIVk (k=1 to D) do
2 if (rand[0,1] < NW(SIVk)) then
3 SIVk =1;

4 if (rand[0,1] > NW(SIVk)) then
5 SIVk =0

4.3. Proposed Binary Guided Migration

The general principal of the migration process in the
original BBO algorithm is that good habitats (with
high HSI) tend to share their SIV (features) with
poor ones (with low HSI) so as to improve their
quality. The immigration rate is used to probabilis-
tically determine the poor habitat (Hi) that should
modify its SIV and the emigration rate is used to

probabilistically decide which of the good habitats
should migrate their SIV to habitat Hi. The migra-
tion operator we propose is similar to this process.
However, it differs in the way of accepting the new
SIV that will replace the older one. We opt to re-
place an SIV by another one only if it improves the
quality of the habitat. This process is described in
algorithm 3.

Algorithm 3: Binary Guided Migration.
1 begin
2 Select Hi with probability based on λi;
3 if Hi is selected then
4 Select H j with probability based on µ j;
5 if H j is selected then
6 for each SIVk (k=1 to D) do
7 Hinew← Hi;
8 Temporarily replace current SIVk in

Hinew with the one in H j;
9 Compute fitness f (Hinew);

10 if ( f (Hinew) is better than f (Hi)) then
11 Hi← Hinew (Accept the migration

of the current SIVk);

12 end

4.4. Proposed Binary Mutation

Because we deal with binary coding scheme in
which the SIV value can be either 1 or 0, we propose
to modify the mutation of the original BBO. We use
the binary mutation that is described in algorithm 4.

Algorithm 4: Binary mutation.
1 begin
2 Compute Pi and mi;
3 for each SIVk (k=1 to D) do
4 if current SIVk is selected based on mi then
5 Hi(SIVk)← 1-Hi(SIVk);

6 end

5. Experiments

To investigate the effectiveness of GAB-BBO, sev-
eral experiments are carried out. In the following
subsections, we firstly evaluate the performance of
the proposed approach using 22 benchmark func-
tions and compare it with other binary optimization
algorithms. Then, we apply GAB-BBO to solve
feature selection problem using intrusion detection
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dataset and compare its results with those of other
feature selection methods. To further appreciate the
performance of the proposed approach, we use other
datasets in last experiments. Finally, we investigate
the scalability. All experiments are conducted using
Java 1.7 on workstation with 1.70 GHz Intel Core i5
4210U CPU and 8 GB main memory.

5.1. Performance Analysis Using the Benchmark
Functions

The objective here is to analyze the convergence be-
havior of the GAB-BBO and compare its perfor-
mance with other well-known binary optimization
algorithms. All the results given in this section are
from the average of 30 runs with 500 iterations and
population of size 30.

5.1.1. Benchmark Functions

We use the benchmark functions introduced in the
work of Mirjalili et al. 17 ( f1 to f22). These
benchmark functions are categorized in three dif-
ferent groups: unimodal (f1 to f7), multimodal (f8
to f16) and composite functions (f17 to f22). Uni-
modal functions have only one global minimum so-
lution and no local minimum solutions whereas mul-
timodal functions have many local minimum solu-
tions. Composite functions have also many local
minimum solutions, however they have more com-
plex structures and they are very similar to the fit-
ness functions of real problems.

5.1.2. Convergence Behavior Analysis

To highlight the improvement of our algorithm in
term of convergence, with respect to the original bi-
nary BBO, we compare the convergence speed of
both algorithms.

Fig.3 illustrates the averaged convergence curves
for the unimodal function f4, the multimodal func-
tion f8 and the composite function f19. In these
curves, we compare the convergence speed of the
original binary BBO namely B-BBO 5, the proposed
algorithm GAB-BBO and the algorithm namely AB-
BBO which is GAB-BBO algorithm without the

proposed binary guided migration (we use instead
the original migration operator).

Fig. 3. averaged convergence curves of B-BBO, AB-BBO
and GAB-BBO algorithms on some benchmark functions

Comparing GAB-BBO with AB-BBO aims to
show the importance of the binary guided migration
in the improvement of the convergence. Parameter
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values of B-BBO are fixed experimentally. Mmax is
set to 0.9, E is set to 0.8 and I is set to 0.8. Parameter
values of AB-BBO and GAB-BBO are dynamically
adjusted using as initial values those of B-BBO.

According to Fig. 3, we observe that AB-BBO
and GAB-BBO tend to converge faster than B-BBO
for the selected functions. For the rest of the bench-
mark functions, experiments show that they remain
converging faster than B-BBO. Therefore, we can
conclude that the use of the ESE approach to dy-
namically adapt the algorithm behavior has widely
improved the convergence speed. In addition, the
proposed algorithm converges faster with the use of
the binary guided migration.

5.1.3. Comparative Study

In this experiment, we compare the GAB-BBO ap-
proach with the Binary BBO (B-BBO) 5, the Binary
Bat Algorithm (B-BA) 17, the Binary PSO (B-PSO)
17 and the Binary Genetic Algorithm (B-GA) 17 us-
ing the same precedent benchmark functions (f1 to
f22).

In table 1, we present results of the comparison.
These results are taken from the reference paper 17

and concern the average of the global best solution
found in the last iteration. From table 1, we notice
what follows:
By comparing GAB-BBO and B-BBO, we observe
that the results obtained by GAB-BBO are widely
better than those obtained by B-BBO for most of the
benchmark functions. By comparing GAB-BBO,
B-GA, B-PSO and B-BA, we observe that for all
the unimodal and multimodal functions (except f14)
GAB-BBO gives better results than the other algo-
rithms. On the other hand, it gives better results
than B-GA and B-PSO for all the composite func-
tions whereas it gives better results than B-BA for
the composite functions f17, f18 and f21. For f19,
f20 and f22 B-BA performs better.

To statistically determine if the proposed al-
gorithm gives a significant improvement over the
aforesaid binary optimization algorithms, we per-
form the non-parametric Friedman test 18 using the
Xlstat software. This statistical test ranks the dif-
ferent algorithms according to the average results of
table 1. The statistic test results are shown in ta-

ble 2. For a significance level alpha equal to 0.05,
we found that the critical value is less than the ob-
served value. Consequently, we can reject the null
hypothesis which means that the difference between
the algorithms is significant.
Furthermore, a pairwise comparison is performed to
determine if the difference between our algorithm
and the other algorithms is significant. The results
indicate that the rank sum differences correspond-
ing to each one of the algorithms B-BA, B-PSO, B-
BBO and B-GA are greater than the threshold value
(20.556) which makes GAB-BBO significantly bet-
ter than the other algorithms.

Based on the results obtained, GAB-BBO has
proven to be a better option than the compared op-
timization procedures. It uses a dynamic behavior
adaptation which does not exist in all the other al-
gorithms but very important to guide the search pro-
cess toward the best solution. Furthermore, B-BA,
B-PSO, B-GA and B-BBO have too many parame-
ters that highly affect the results. In GAB-BBO, the
parameters are updated dynamically in the proposed
adaptive behavior mechanism.

5.2. Application of GAB-BBO to Feature
Selection Problem

In this section, the proposed approach is applied to
solve the feature selection problem in intrusion de-
tection field. We aim to select the most discrimi-
native features that will contribute to improve the
accuracy detection of the classifier. In this part of
the work, we use Decision Tree (DT) as classifier 19

to measure the quality of each selected feature sub-
set. DT is mainly characterized by being fast, sim-
ple, parameter-free and preventing overfiting.

To evaluate the proposed approach, we con-
sider the Execution Time (ET), the number of se-
lected features and the following classification per-
formance measures:

• Detection Rate (DR) is the proportion of attacks
that are correctly classified as attack.

DR =
Number of attacks correctly classified as attacks

Total Number of attacks
×100%

(8)
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Table 1: Minimization results of the Benchmark functions

B-GA B-BA B-PSO B-BBO GAB-BBO fmin

f1 10.0705 1.8518 5.2965 76.166664 0.0 0
f2 0.2694 0.0965 0.2292 1.6333333 0.0 0
f3 555.9039 7.8103 22.48915 232.3 0.0 0
f4 1.59375 1.1526 2.6088 14.7 0.73333 0
f5 369.7545 25.0743 148.0799 737.06665 1.6 0
f6 6.9842 2.6993 8.4966 66.05 1.25 0
f7 0.047174 0.0060 0.015542 0.0 0.0 0
f8 -929.324 -985.320 -988.355 -1912.5645 -2094.9138 -418.9829 x 5
f9 2.1896 1.5856 4.977688 0.6333333 0.0 0
f10 1.399853 1.1560 2.725568 0.9396821 4.440892E-16 0
f11 0.7067 0.2463 0.3873 1.8940364 0.0 0
f12 0.191197 0.2708 0.621354 4.7307143 9.42327E-32 0
f13 0.193006 0.1297 0.44445 1142.6733 1.3497843E-32 0
f14 -3.8849 -3.6425 -3.6416 -1.5650622 -1.5650684 -4.687
f15 -0.474555 -0.5173 -0.055483 -0.14559314 -1.0 -1
f16 0.001575 3.198E-4 2.95E-4 -1.0 -1.0 -1
f17 193.6682 93.2475 194.8523 87.49375 13.522563 0
f18 205.6785 156.6317 146.7613 166.41144 55.110798 0
f19 384.7761 149.6407 445.7764 1135.6273 381.2022 0
f20 588.1262 146.9480 479.9867 652.906 449.5591 0
f21 246.3021 166.1212 172.0816 139.19975 44.124817 0
f22 914.5375 152.8125 691.65 568.5127 457.36917 0

Table 2: Ranks and test results for comparison of GAB-BBO with the used binary optimization algorithms

Results GAB-BBO B-BA B-PSO B-BBO B-GA
Rank sum 29 52 81 83 85
Rank sum differences - 23 52 54 56

Test results α(significance level) = 0.05
df(degree of freedom)= k-1= 4
χ2

r (observed value) = 44,566
χ2

0.05,4 (critical value) = 9,488
P-value < 0.0001
Rank sum Difference threshold = 20.556
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• False Positive Rate (FPR) is the proportion of nor-
mal instances that are incorrectly classified as at-
tacks.

FPR=
Number of normals that are incorrectly classified as attacks

Total Number of normal instances
×100%

(9)
• Accuracy Rate (AR) is the proportion of correctly

classified instances.

AR =
Number of correctly classified instances

Total Number of instances
×100% (10)

• F-measure is a weighted average of precision and
recall.

F-measure = 2∗ Precision*Recall
Precision+Recall

(11)

Where

Precision =
Number of correct attacks

Number of instances classified as attacks
(12)

Recall =
Number of correct attacks
Total number of attacks

(13)

5.2.1. Kdd’99 Dataset

In this experiment, we use the Kdd’99 dataset
which is downloaded from http://kdd.ics.uci.edu.
We choose Kdd’99 because it is the largest pub-
licly available and the widest used dataset by the re-
searchers in the intrusion detection field 16,14.
It contains a set of records (instances) describing
TCP connections. The raw dataset consists of 41
features, 32 are continuous and 9 are discrete, and a
label specifying the class. The class is labeled as ei-
ther normal or attack with 24 types of attacks falling
into four categories: Probe, Denial of Service (DoS),
User to Root (U2R) and Remote to Local (R2L).
Kdd’99 includes three independent sets: the whole
Kdd training data with 4940000 records, 10% Kdd
training data with 494021 records and Kdd test data
with 311.028 records.

5.2.2. Experimental Steps

In this section, we describe the process of experi-
ments consisting of four phases: data preprocessing,
data reduction, training and testing.

• Data preprocessing phase consists of the follow-
ing stages:

• Remove the redundancy records.
• Discretize the continuous features using Fayyad

method 20. Discretization is performed to fa-
cilitate the computation of the correlation mea-
sure (correlation degree between each feature
and the class label) used in one of the imple-
mented algorithms, which is FS-wBCO.

• Remove two features (num outbound cmds,
is host login) because their identical values in
the 10% Kdd training data.

• Transform the Kdd’99 multiclass dataset to a
binary one containing two classes: normal class
and attack class.

• Divide the dataset into three independent parts:
training subset, validation subset and test sub-
set.

• Reduce the dataset size by applying a random
subsampling method 21. A great deal of re-
searchers in intrusion detection opt for sam-
pling the Kdd99 dataset because it is a cumber-
some dataset. We select randomly 6472 records
from the 10% Kdd for the training subset, 1849
records and 925 records from the Kdd test data
for the validation and the test subsets, respec-
tively. The same proportion of instances in each
class is kept as in the 10% Kdd training and Kdd
test data. Table 3 gives the distribution of sam-
ples of each class in training, validation and test
subsets.

Table 3: Sample distribution on training, validation
and test subsets

Classes Training Validation Test
Normal 2000 1159 581
attack 4472 690 344
Total 6472 1849 925

• Data reduction phase uses the feature selection al-
gorithm to select the best subset of relevant, non-
redundant features. Since the proposed approach
is of wrapper type, a classifier is used to evaluate
the candidate feature subsets. The fitness function
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that is used in the proposed algorithm is the ac-
curacy rate of the DT classifier on the validation
subset.

• Training phase builds the model using the selected
features.

• Testing phase evaluates the performance of the
classifier on the test subset using the selected fea-
tures. There are different ways to evaluate a learn-
ing process. Among them, cross validation and
hold out evaluation methods. To evaluate our ap-
proach on the Kdd’99 dataset, we opt for the hold
out evaluation because cross validation is compu-
tationally expensive.

5.2.3. Experimental Results and Comparisons

In this section, the GAB-BBO approach is eval-
uated and compared with other feature selection
algorithms. The comparisons are divided into two
parts. In the first part, we consider standard FS al-
gorithms available in Weka 22 including filter algo-
rithms (Information Gain (IG) 23, Gain Ratio (GR)
24 and Chi-Square (Chi-sq) 25), wrapper algorithms
(Best First with Forward Selection (BF/FS) and best
first with Backward Selection (BF/BS) 4) and em-
bedded algorithms (SVM-FS 26 and OneR-FS 27).
In the second part, GAB-BBO is compared with
some implemented population-based FS algorithms
which are FS-wBCO 10, RACOFS 9, DEFSw

12 and
CBBBOFS 13. Parameters of these algorithms are
experimentally fixed as shown in table 4.

Table 4: Parameter values of the implemented algo-
rithms

Algorithms Parameter values
FS-wBCO NC (number of constructive steps)

=depends on the datasets size
RACOFS γ(initial pheromone)=rand[0,1]

α (concentration rate)=0.65
DEFSw Cr=0.5, F=0.4
CBBBOFS Mmax=0.9, E=0.8, I=0.8

For the Kdd’99 dataset, the NC parameter (num-
ber of constructive steps in FS-wBCO) is set to 9. In

order to perform a fair comparison, all population-
based methods use the same number of iterations set
to 50, the same population size set to 30 and the
same initial solutions. All results obtained by the
tested standard FS algorithms are from one run, be-
cause they are deterministic algorithms (give unique
results). On the other hand, all results obtained by
GAB-BBO and the implemented population-based
FS algorithms are from average of 30 runs, because
they are stochastic algorithms.

Note that, GAB-BBO, FS-wBCO and RACOFS
have the ability to automatically determine the num-
ber of selected features. Thus, we retain the aver-
age value of all the found numbers over the 30 runs
as number of selected features. On the other hand,
DEFSw and CBBBOFS, need to have the number of
features to select, as input parameter. Hence, we set
it to the same number found by GAB-BBO.

Table 5 summarizes the results obtained by
GAB-BBO and the standard FS algorithms. It
presents, in the first line, the results obtained with-
out any feature selection process.
The results indicate that the approach we proposed
is able to reduce the dataset dimension by 71% (se-
lect 11 features from 39) improving substantially the
performance in comparison to using all features. In
addition, GAB-BBO is very competitive with re-
spect to the standard FS algorithms in term of the
classification performances. It gives DR equal to
98.12%, FPR equal to 2.93%, AR equal to 97.72%
and F-measure equal to 0.96.

Table 6 presents the results given by GAB-BBO
and the implemented population-based FS algo-
rithms. The results indicate that GAB-BBO exhibits
better classification performances with less or equal
number of selected features.

In term of run time, GAB-BBO requires more
time than the standard FS algorithms and than the
implemented population-based FS algorithms. This
time does not affect the detection response time,
since feature selection is a preprocessing task that
is not included in the intrusion detection process.

5.2.4. Validation Using Artificial Datasets

In this section, we evaluate our approach using arti-
ficial datasets 3 in which the optimal feature subset
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Table 5: Comparisons of GAB-BBO with the standard FS algorithms on the kdd’99 dataset

Methods DR (%) FPR (%) AR (%) F-measure ET (s) Number of selected features
All feature 87.2 1.5 94.27 0.91 - All
GAB-BBO 98.12 2.93 97.72 0.96 654.19 11
IG 87.5 1.9 94.16 0.91 <1 top11
GR 87.2 1.7 94.16 0.91 <1 top11
Chi-sq 87.5 1.9 94.16 0.91 <1 top11
BF/FS 91.3 2.6 95.13 0.93 4 4
BF/BS 87.8 1.9 94.26 0.91 52 11
SVM-FS 92.7 13.4 88.86 0.86 12 top11
OneR-FS 87.8 1.7 94.37 0.92 < 1 top11

Table 6: Comparisons of GAB-BBO with the implemented population-based FS algorithms on the kdd’99
dataset

Methods DR (%) FPR (%) AR (%) F-measure ET (s) Number of selected features
GAB-BBO 98.12 2.93 97.72 0.96 654.19 11
DEFSw 97.53 4.50 96.77 0.95 65.93 11
CBBBOFS 96.79 2.49 97.05 0.96 130.94 11
RACOFS 96.76 7.52 95.16 0.92 54.07 12
FS-wBCO 96.85 2.38 97.13 0.96 229.48 17

Table 7: Details of the artificial datasets

ID Dataset #feat. # instances Rel. feat.
CA corrAl 6 32 1-4
CA100 corrAl100 99 32 1-4
M1 Monk1 6 122 1,2,5
M3 Monk3 6 122 2,4,5
P3 Parity3+3 12 64 1-3
L25 Led25 24 50 1-7
L100 Led100 99 50 1-7
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is known in advance. The total number of features,
the number of instances and the relevant features of
each selected dataset are given in table 7 .

The proposed approach is evaluated for each
dataset and compared with the aforesaid feature se-
lection algorithms. The evaluation is performed ac-
cording to the Execution Time (ET), the average and
maximum accuracy rate (Avg.AR and Max.AR) ob-
tained in a 5-fold cross validation and the index of
success (Succ.). Index of success (formula 14) is a
scoring measure 3 that aims to reward the selection
of relevant features and penalize the selection of re-
dundant and irrelevant ones.

Succ.=
[

Rs

Rt
−α

Is

It

]
x100 (14)

where Rs is the number of selected relevant fea-
tures, Rt is the total number of relevant features, Is
is the number of selected irrelevant features, It is the
total number of irrelevant features and α is a control
parameter which is defined as α = min

{
1
2 ,

Rt
It

}
. It

reaches its best value at 100.
In table 8, we compare GAB-BBO with the stan-

dard FS algorithms. Results indicate that GAB-BBO
gives similar or better accuracies than the standard
FS algorithms. On CA dataset, GAB-BBO gives ac-
curacy of 84.37% and selects all the relevant fea-
tures. It performs similar to the wrapper algorithm
BF/BS and better than BF/FS, the filter and the em-
bedded algorithms. On CA100, GAB-BBO gives
the best accuracy of 93.02% with index of success of
74% which is less than the one obtained by BF/BS.
This is due to the fact that in CA100 dataset there are
some irrelevant features that are informative to the
classifier 3. On M1, the proposed algorithm gives
accuracy of 100% and selects all the relevant fea-
tures. These results are similar to those obtained by
the wrapper methods and less than those obtained
by the filter and the embedded methods. On M3,
GAB-BBO gives the best index of success with ac-
curacy of 93.44% which is similar to those obtained
by all the standard FS methods. On P3, GAB-
BBO achieves the best accuracy (100%) with best
index of success (100%). These results are better
than those obtained by all the standard FS methods.
BF/BS reaches accuracy equal to 100% with index

of success equal to -11%. This is due to the fact
that BF/BS finds redundant features existing on P3
dataset 3 which leads to same accuracy than GAB-
BBO (100%) with smallest index of success (-11%).
On L25 and L100, the proposed method exhibits
high accuracy and less index of success in compari-
son to the other standard algorithms. This is due to
the noise which is included in the datasets and which
assigns to the relevant features an incorrect values 3.
Table 10 shows the Friedman statistic test of the
maximum accuracy rate of table 8. The test results
indicate that the null hypothesis is rejected (critical
value is less than the observed value) which means
that the difference between the algorithms is signifi-
cant. Pairwise comparison shows that GAB-BBO is
significantly better than the filter and the embedded
FS algorithms. For the wrapper algorithms (BF/FS
and BF/BS), GAB-BBO achieves similar results.

In table 9, we give the results obtained by GAB-
BBO and the implemented population-based FS al-
gorithms over the used artificial datasets. These
results show that GAB-BBO performs better than
DEFSw and RACOFS on most datasets. Further-
more, it performs better than CBBBOFS on L25 and
L100 and better than FS-wBCO on CA100, L25 and
L100. Friedman test results, which are presented in
table 11, show that our algorithm is significantly bet-
ter than DEFSw and RACOFS. For CBBBOFS and
FS-wBCO, GAB-BBO gives similar results.

Furthermore, we note in table 8 and 9 that GAB-
BBO requires more execution time than all the stan-
dard and population-based FS algorithms. However,
this time remains reasonable.

5.2.5. Validation Using Real-Problem Datasets

To further evaluate the effectiveness of the proposed
approach, the same previous comparisons are per-
formed using seven real-problem datasets with dif-
ferent number of features.
Table 12 presents the details of each selected dataset.
The first column corresponds to the identifier of the
datasets (ID). The second, third and fourth columns
correspond to the description of the datasets. The
fifth column corresponds to the number of samples
in each portion of the datasets and the last column
gives the NC parameter values.
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Table 8: Results of GAB-BBO and the standard FS algorithms on the artificial datasets

Datasets Measures GAB-BBO IG GR Chi-sq BF/FS BF/BS SVM-
FS

OneR-
FS

CA Avg.AR(%) 84.37 - - - - - - -
Max.AR(%) 84.37 59.37 59.37 59.37 75 84.37 75 81.25
ET(s) 13.39 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Rel.feat. 1-4 2,3,4 2,3,4 2,3,4 - 1-4 1-4 1-4
#Irr.feat. 0 2 2 2 1 0 1 1
Succ.(%) 100 25 25 25 -25 100 75 75

CA100 Avg.AR(%) 93.02 - - - - - - -
Max.AR(%) 93.75 53.12 53.12 53.12 84.37 90.62 53.12 59.37
ET(s) 172.60 < 1 < 1 < 1 2 96 1 < 1
Rel.feat. 1,2,4 - - - - 1-4 4 1,3,4
#Irr.feat. 12 10 10 10 3 6 9 7
Succ.(%) 74 -0.44 -0.44 -0.44 -0.13 99 24 74

M1 Avg.AR(%) 100 - - - - - - -
Max.AR(%) 100 98.38 98.38 98.38 100 100 92.74 92.74
ET(s) 24 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Rel.feat. 1,2,5 1,2,5 1,2,5 1,2,5 1,2,5 1,2,5 1,2,5 1,2,5
#Irr.feat. 0 2 2 2 0 0 2 2
Succ.(%) 100 66 66 66 100 100 66 66

M3 Avg.AR(%) 93.44 - - - - - - -
Max.AR(%) 93.44 93.44 93.44 93.44 93.44 93.44 93.44 93.44
ET(s) 20.50 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Rel.feat. 2,4,5 2,4,5 2,4,5 2,4,5 2,5 2,5 2,4,5 2,4,5
#Irr.feat. 1 2 2 2 0 0 2 2
Succ.(%) 83 66 66 66 66 66 66 66

P3 Avg.AR(%) 100 - - - - - - -
Max.AR(%) 100 78.12 78.12 78.12 96.87 100 54.68 56.25
ET(s) 20.55 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Rel.feat. 1-3 2,3 2,3 2,3 1-3 - - -
#Irr.feat. 0 3 3 3 4 3 5 5
Succ.(%) 100 55 55 55 85 -11 -18 -18

L25 Avg.AR(%) 57.33 - - - - - - -
Max.AR(%) 58 36 36 36 52 50 18 42
ET(s) 51.47 < 1 < 1 < 1 2 3 1 < 1
Rel.feat. 1,2,7 1-7 1-7 1-7 1,2 1,2 5,7 1-7
#Irr.feat. 2 3 3 3 3 3 8 3
Succ.(%) 38 92 92 92 21 21 9 92

L100 Avg.AR(%) 60.53 - - - - - - -
Max.AR(%) 64 38 40 38 60 54 34 42
ET(s) 223.41 < 1 < 1 < 1 4 142 9 < 1
Rel.feat. 1,2 1,2,4,5,7 1,2,4-7 1,2,4,5,7 1,2 1,2,5 5,7 1,2,5,7
#Irr.feat. 4 5 4 1 2 8 6
Succ.(%) 28 71 85 71 28 42 27 56

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 914–935
___________________________________________________________________________________________________________

928



Table 9: Results of GAB-BBO and the implemented population-based FS algorithms on the artificial datasets

Datasets Measures GAB-BBO DEFSw CBBBOFS RACOFS FS-wBCO
CA Avg.AR(%) 84.37 75.62 84.37 78.02 84.37

Max.AR(%) 84.37 84.37 84.37 78.12 84.37
ET(s) 13.39 2.16 9.39 3.53 3.44
Rel.feat. 1-4 1-4 1-4 1 1-4
#Irr.feat. 0 0 0 2 0
Succ.(%) 100 100 100 -25 100

CA100 Avg.AR(%) 93.02 83.43 83.95 71.14 87.5
Max.AR(%) 93.75 90.62 87.5 78.12 87.5
ET(s) 172.60 6.05 11.19 13.99 25.08
Rel.feat. 1,2,4 2 - - 1-4
#Irr.feat. 12 3 4 6 5
Succ.(%) 74 24 -0.17 -0.26 99

M1 Avg.AR(%) 100 93.99 100 88.11 100
Max.AR(%) 100 100 100 99.19 100
ET(s) 24 9.13 12.81 6.89 33.62
Rel.feat. 1,2,5 1,2,5 1,2,5 1,2,5 1,2,5
#Irr.feat. 0 0 0 2 0
Succ.(%) 100 100 100 66 100

M3 Avg.AR(%) 93.44 92.92 93.44 93.44 93.44
Max.AR(%) 93.44 93.44 93.44 93.44 93.44
ET(s) 20.50 7.69 13.13 6.45 25.30
Rel.feat. 2,4,5 2,4,5 2,5 2 2,5
#Irr.feat. 1 0 1 1 1
Succ.(%) 83 100 50 50 50

P3 Avg.AR(%) 100 96.92 100 70.41 100
Max.AR(%) 100 100 100 90.62 100
ET(s) 20.55 5.18 9.66 6.04 12.91
Rel.feat. 1-3 1,2 1-3 1-3 1-3
#Irr.feat. 0 1 0 1 0
Succ.(%) 100 62 100 96 100

L25 Avg.AR(%) 57.33 53.33 52.73 35.13 54.6
Max.AR(%) 58 56 58 40 56
ET(s) 51.47 9.89 19.37 9.42 24.54
Rel.feat. 1,2,7 1,2,5,6 1,2,7 1-7 1,2,5,7
#Irr.feat. 2 3 4 7 0
Succ.(%) 38 49 33 83 57

L100 Avg.AR(%) 60.53 59.33 47.86 29 49.6
Max.AR(%) 64 64 60 38 56
ET(s) 223.41 10.58 20.65 19.20 56.99
Rel.feat. 1,2 1,2,6 1,2 1,3,5,7 1,4,5
#Irr.feat. 4 4 5 41 6
Succ.(%) 28 42 28 53 42
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Table 10: Ranks and test results for comparison of GAB-BBO with the standard FS algorithms on the artificial
datasets

Results GAB-BBO BF/BS BF/FS OneR-
FS

GR IG Chi-sq SVM-
FS

Rank sum 50.5 45.5 42 29 24 22.5 22.5 16
Rank sum differences - 5 8.5 21.5 26.5 28 28 34.5

Test results α(significance level) = 0.05
df(degree of freedom)= k-1=7
χ2

r (observed value) = 33,79
χ2

0.05,7 (critical value) = 14,067
P-value < 0.0001
Rank sum Difference threshold = 17,96

Table 11: Ranks and test results for comparison of GAB-BBO with the population-based FS algorithms on the
artificial datasets

Results GAB-BBO FS-wBCO CBBBOFS DEFSw RACOFS
Rank sum 30,5 26,5 22.5 15 10,5
Rank sum differences - 4 8 15 20

Test results α(significance level) = 0.05
df(degree of freedom)= k-1=4
χ2

r (observed value) = 18,237
χ2

0.05,4 (critical value) = 9.488
P-value =0.001
Rank sum Difference threshold = 11.595
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The first six datasets are downloaded from http://

archive.ics.uci.edu/ml/index.html and the
last one from http://penglab.janelia.org/

proj/mRMR/FAQ_mrmr.htm

The proposed approach is evaluated on each se-
lected dataset and compared with the aforesaid FS
algorithms. The comparison is based on the average
Accuracy Rate (AR), Execution Time (ET) and the
number of selected features.

In table 13, we compare the use of all features
with GAB-BBO and the standard FS algorithms.
The results show that GAB-BBO outperforms the
standard FS algorithms and gives much better ac-
curacies on all the datasets when compared with the
results obtained using all features. On BC dataset,
GAB-BBO gives the best accuracy of 95.77% with
5 features and among the standard algorithms, only
wrapper algorithms (BF/FS and BF/BS) and the
embedded algorithm OneR-FS are able to improve
the performance with accuracy of 92.95%. On IO
dataset, all the standard algorithms improve the ac-
curacy, however GAB-BBO achieves much better
accuracy of 97.14% with number of features equal
to 16. On KR, SB and HV datasets, GAB-BBO
remarkably improves the accuracy and no improve-
ment can be achieved using the standard FS algo-
rithms. Also on MUS1 and LU datasets, GAB-BBO
gives the best accuracy of 84.5% with 79 features
and 86.25% with 130 features, respectively.
To show whether the difference between algorithms
is significant, Friedman test is performed. The test
results, which are given in table 14, show that GAB-
BBO is significantly better than all the standard FS
algorithms.

In table 15, the comparisons are made with the
implemented population-based FS algorithms. Re-
sults indicate that GAB-BBO is competitive with re-
spect to the other population-based FS algorithms
in term of accuracy rate. On BC dataset, our al-
gorithm gives the best accuracy with 95.77%. On
IO dataset, the proposed algorithm is better than
FS-wBCO and mostly better than DEFSw, CBB-
BOFS and RACOFS. On KR dataset, GAB-BBO
achieves better accuracy than DEFSw, CBBBOFS
and FS-wBCO and much better than RACOFS. On
SB dataset, the proposed algorithm gives better ac-

curacy than DEFSw and CBBBOFS and mostly bet-
ter accuracy than RACOFS and FS-wBCO with re-
duced number of features. On HV and MUS1
datasets, GAB-BBO shows the best accuracy among
all algorithms with 61.33% and 84.5%, respectively.
On LU dataset, GAB-BBO gives similar accuracy
than CBBBOFS and outperforms the other algo-
rithms. Friedman statistic test results, which are
given in table 16, show that the null hypothesis is
rejected which means that the difference between
the algorithms is significant. Pairwise comparison
reveals that GAB-BBO is significantly better than
DEFSw, FS-wBCO and RACOFS. For CBBBOFS,
GAB-BBO shows similar performances.

In term of execution time, we remark from tables
13 and 15 that GAB-BBO is more time consuming
than standard and population-based FS algorithms.
This lack of computation speed is compensated by a
gain in classification accuracy.

5.2.6. Approach Scalability

In this section, we analyze the scalability of GAB-
BBO approach by calculating the execution time
for different problem sizes. Fig. 4 illustrates the
curve of the execution time evolution according to
the problem size (dataset dimension ranging from
9 to 325 features). The estimated equation of this
curve is polynomial of degree four which confirms
the scalability of the proposed approach.

Fig. 4. Evolution of the execution time according to the
dimension
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Table 12: Details of the real-problem datasets

ID Dataset Number of feature Number of instances Training/validating/testing NC
BC Breast cancer 9 699 489/139/71 3
lO Ionosphere 35 351 246/70/35 9
KR Kr Vs Kp 36 3196 2236/638/322 5
SB Spame base 57 4601 3220/966/415 15
HV Hill Valley 101 606 400/176/30 75
MUS1 MUSK 1 168 476 272/144/60 126
LU Lung 325 73 51/14/8 243

Table 13: Results of GAB-BBO and the standard FS algorithms on the real-problem datasets

Datasets Measures All-
features

GAB-BBO IG GR Chi-sq BF/FS BF/BS SVM-
FS

OneR-
FS

BC AR(%) 91.54 95.77 91.54 91.54 91.54 92.95 92.95 91.54 92.95
ET(s) 18.04 < 1 < 1 < 1 1 1 < 1 < 1
#feat. 5 top 5 top 5 top 5 7 6 top 5 top 5

lO AR(%) 85.71 97.14 88.57 88.57 88.57 91.42 88.57 88.57 88.57
ET(s) 17.93 < 1 < 1 < 1 2 2 < 1 < 1
#feat. 16 top 16 top 16 top 16 7 8 top16 top16

KR AR(%) 93.78 98.72 93.78 93.78 93.78 93.47 93.16 75.77 93.47
ET(s) 215.92 < 1 < 1 < 1 2 17 1 < 1
#feat. 22 top 22 top 22 top 22 9 25 top22 top22

SB AR(%) 83.85 89.18 82.40 80.48 79.27 82.89 77.59 87.71 69.63
ET(s) 1034.10 < 1 < 1 < 1 29 205 8 < 1
#feat. 17 top 17 top 17 top 17 26 34 top17 top17

HV AR(%) 53.33 61.33 53.33 53.33 53.33 50 50 53.33 53.33
ET(s) 131.08 < 1 < 1 < 1 1 34 < 1 < 1
#feat. 39 top 39 top 39 top 39 6 7 top39 top39

MUS1 AR(%) 66.66 84.5 68.7 68.33 68.7 51.66 51.66 51.66 66.66
ET(s) 2633.45 < 1 < 1 < 1 4 87 6 < 1
#feat. 79 top 79 top 79 top 79 10 10 top79 top79

LU AR(%) 50 86.25 37.5 37.5 37.5 75 62.5 62.5 25
ET(s) 858.25 1 1 1 2 400 13 < 1
#feat. 130 top 130 top 130 top 130 6 9 top130 top130
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Table 14: Ranks and test results for comparison of GAB-BBO with the standard FS algorithms on the real-
problem datasets

Results GAB-BBO BF/FS IG Chi-sq GR SVM-
FS

OneR-
FS

BF/BS

Rank sum 56 33 31,5 29,5 29 26,5 24 22,5
Rank sum differences - 23 24 26.5 27 29 32 33

Test results α(significance level) = 0.05
df(degree of freedom)= k-1=7
χ2

r (observed value) = 21,57
χ2

0.05,7 (critical value) = 14,06
P-value=0.003
Rank sum Difference threshold = 17,963

Table 15: Results of GAB-BBO and the implemented population-based FS algorithms on the real problem
datasets

Datasets Measure GAB-BBO DEFSw CBBBOFS RACOFS FS-wBCO
BC AR(%) 95.77 95.16 95.07 94.03 94.36

ET(s) 18.04 5.66 12.10 4.19 13.13
#feat. 5 5 5 4 4

lO AR(%) 97.14 94.38 95.42 92.09 96.85
ET(s) 17.93 3.24 5.36 4.41 9.23
#feat. 16 16 16 8 12

KR AR(%) 98.72 97.14 97.63 91.27 97.73
ET(s) 215.92 51.35 83.39 13.04 16.28
#feat. 22 22 22 24 22

SB AR(%) 89.18 88.36 87.87 84.62 85.95
ET(s) 1034.10 63.21 126.33 23.35 40.45
#feat. 17 17 17 23 25

HV AR(%) 61.33 55.99 58.33 60 53.33
ET(s) 131.08 6.33 16.72 13.81 3.12
#feat. 39 39 39 3 33

MUS1 AR(%) 84.5 81.16 83.66 81.16 82.49
ET(s) 2633.45 117.69 192.65 55.57 51.27
#feat. 79 79 79 42 62

LU AR(%) 86.25 77.5 86.25 53.75 66.25
ET(s) 858.25 17.61 43.09 109.67 23.76
#feat. 130 130 130 62 114
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Table 16: Ranks and test results for comparison of GAB-BBO with the population-based FS algorithms on the
real-problem datasets

Results GAB-BBO CBBBOFS DEFSw FS-wBCO RACOFS
Rank sum 34,5 23,5 18,5 18 10,5
Rank sum differences - 11 16 16.5 24

Test results α(significance level) = 0.05
df(degree of freedom)= k-1=4
χ2

r (observed value) = 18,203
χ2

0.05,4 (critical value) = 9.488
P-value =0.001
Rank sum Difference threshold = 11.595

6. Conclusion

Feature selection is an NP-hard combinatorial opti-
mization problem. It is the process of selecting a
subset of relevant, non-redundant features from the
original ones.

In this paper, we propose an improved version of
the Biogeography Based Optimization (BBO) algo-
rithm to solve the feature selection problem in intru-
sion detection. In the new approach, which is ab-
breviated as GAB-BBO, we propose to improve the
original migration and mutation processes through a
new binary guided migration and a new binary muta-
tion, respectively. Furthermore, we modify the Evo-
lutionary State Estimation (ESE) approach and use
it to dynamically adapt the algorithm behavior. In
the proposed ESE approach, we first use the Ham-
ming distance between the binary solutions to calcu-
late an evolutionary factor f. Then, we use the fuzzy
logic to determine the evolutionary state of the algo-
rithm from the obtained f value. According to the
identified state, we adapt the algorithm behavior us-
ing new adaptive strategy based on parameter update
and Weighted Local Search (WLS) procedure.

Two experiments have been conducted. In the
first one, the performances of GAB-BBO have been
evaluated using benchmark functions and compared
with other binary optimization algorithms. In the
second one, we have applied the proposed approach
to solve the feature selection problem using the
Kdd’99 intrusion detection dataset and compared it

with other feature selection methods. The compara-
tive studies show the competitiveness of GAB-BBO.
For further validation, the same previous experi-
ment has been performed using artificial and real-
problem datasets confirming the effectiveness of the
proposed approach. Finally, the approach scalability
has been investigated through the study of the exe-
cution time evolution according to different problem
sizes (number of features). The latter experiment
shows the scalability of GAB-BBO. It has been con-
cluded that the proposed approach constitutes a good
solution for feature selection problem.
As future work, we plan to improve the execution
time by proposing a distributed version of our al-
gorithm. Also we plan to modify our algorithm for
multi-class classification. To further improve the ac-
curacy, we intend to hybrid the proposed algorithm
with different local search strategies such as: simu-
lated annealing, tabu search and variable neighbor-
hood search. Finally, in the experiments, we will
investigate alternative evaluation methods such as n
folds cross validation with other classifiers such as
ANN, KNN and SVM.
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