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Abstract: Spark is a memory-based distributed data processing framework. Lots of data is 
transmitted through the network in the shuffle process, which is the main bottleneck of the Spark. 
Because the partitions are unbalanced in different nodes , the Reduce task input are unbalanced. In 
order to solve this problem, a partition policy based on task local level is designed to balance the task 
input. Finally, the optimization mechanism is verified by experiments, which can alleviate the 
data-skew and improve the efficiency of the job process. 

1. Introduction 
Apache Spark[1] is one of the popular parallel computing frameworks, which has the 

characteristics of fast, general, simple and so on. Due to the use of memory based computing, Spark 
computing speed is 100 times faster than Hadoop[2] MapReduce in memory, or 10x faster on disk. 
Aiming at the poor efficiency of the applications of iterative machine learning algorithms and 
interactive data mining in the MapReduce [3,4] computational frameworks, spark proposes a 
distributed memory abstraction, which is called resilient distributed datasets(RDD). It not only 
retains the scalability, fault tolerance and compatibility of MapReduce, but also makes up for the 
deficiency of MapReduce. Compared with other parallel computing frameworks, Spark is more 
efficient for large scale data processing. 

With more and more business area used Spark, the framework inherent shortcomings has 
gradually came out. Spark framework produce a large amount of temporary files, unbalanced dataset 
and the pulled too much data during the shuffle process, data-skew, which greatly affects the 
efficiency of Spark performance. Data-skew are common in Spark, which is the main reason to 
restrict the execution of the job. Therefore, the optimization of shuffle mechanism becomes an urgent 
problem in Spark. 

2. Related work 
There has been a lot of research on the shuffle mechanism of the Spark framework. As many 

MapReduce implementations have been used to process massive data, shuffle phase is proved to be 
one of the most threats to the Spark. As there are too many small files in the shuffle process, which 
seriously affect the disk I / O efficiency, Shuffle File Consolidation[5] has been proposed to reduce 
the amount of temporary files generated during shuffle by combining the temporary files; In addition, 
in order to solve the problem partition non-uniformity in partitioning strategy, Benjamin Gufler[6] 
proposed Fine Partitioning and Dynamic Fragmentation algorithm to re-partition the output of Map 
task so that each Reduce task partitions are roughly the same and alleviate the data skew problem; In 
[7], Chen Yingzhi Proposed an adaptive memory scheduling algorithm based on the overflow history 
to solve the memory overflow error in the shuffle phase caused by the imbalance of task memory 
requirement; In [8] [9], the adaptive strategy of SCID (Splitting and Combination algorithm) and 
SASM (Spark Adaptive Skew Mitigation) are proposed respectively, and the data-skew problem is 
mitigated by data migration; Mosharaf Chowdhury [10] proposed Orchestra scheduling framework, 
the overall network scheduling strategy to improve the network utilization during shuffle phase. 
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Most of the above researches focus on scheduling and memory optimization, while ignoring the 
impact of network on shuffle. In the presence of partitioning skew, the existing shuffle strategy 
encounters the problems of long intermediate data shuffle time and noticeable network overhead. 
with the presence of partitioning skew, the blindly hash-partitioning is inadequate and can lead to (1) 
network congestion caused by the huge amount of shuffled data, (2) unfairness of Reduce tasks inputs, 
To overcome these challenge ,we propose a partitions algorithm based on the location of the 
intermediate data. What’s more we have developed an novel approach to balance the Reduce task 
inputs. 

3. RDD and partitions 
RDD (Resilient Distributed Datasets) is a highly constrained shared memory model. And RDDs 

are motivated by two types of applications that current computing frameworks handle inefficiently: 
iterative algorithms and interactive data mining tools. RDD is a read-only, partitioned collection of 
records. RDD can only be created based on the execution of deterministic operations on the dataset in 
the stable physical store and other RDDs. Transformations and actions are the main RDD operations 
in Spark. In addition to these operators, users can ask for an RDD to persist. Each RDD implements 5 
internal interfaces: Operation(),Partitions(),preferredLocations(p),Dependencies(),Iterator(p, 
parentIters), Partitioner(). 

There are two dependencies between RDD: narrow dependency and wide dependency. Narrow 
dependency, each partition of parent RDD is used by at most one partition of child RDD. And for the 
wide dependency, multiple child partitions may depend on the same parent RDD. First, narrow 
dependency allows all parent partitions to be calculated on a cluster node in a pipelined way(such as 
map filter). And wide dependency will need to first calculate all the parent partition and be shuffled 
across the node, which is similar to the MapReduce. The process of RDD is shown in Fig 1. 
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Fig. 1 RDDs process 

 
In MapReduce framework, the shuffle phase is a bridge between Map and Reduce. The output of 

Map task is transmitted to Reduce task through the shuffle. The default partitioning algorithm in 
Spark is Hash(hash (Hash code (Intermediate-key) Modulo Partitions)),and different key represents 
different partitions. 

4. Local-based partitioning 

4.1 Problem analysis 
(1) Data-skew 
After MapReduce became a popular parallel framework, data skew has become one of the key 

factors affecting the efficiency of job. As described in section 3, during the shuffle phase, each 
Reduce task must fetch some elements from every Map task. As the size of partitions depends on the 
number of relevant key/value tuples, data skew will give rise to the imbalance among different 
Reduce task because of the keys dispatching based on hashing algorithm. 

Since the concept of Stage is used in Spark, the child Stage will not be committed until the parent 
Stage is completed. And we know that Spark assigns one task every partition and each worker can 
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process one task at a time. So, the imbalanced data of Reduce task input among different node, not 
only delayed task execution time, but also less resource utilization. This is shown in Fig 2. 

P0 P1

p0 P1 P0 P1 P0 P1Map

Reduc
e

 
Fig. 2 Data skew 

 
(2) Data Locality 
Locality [11] is to schedule the task on a machine that stores its inputs. With the delay scheduling, 

Spark can automatically adjust its own local match policy based on the submitted time of previous 
task. As it goes, "transfer data is not as good as transmission calculation", task is started preferentially 
at the location of the data store, which improves the local preferment level of task during the 
scheduling process. This paper[10] shows that the network I/O takes up more than 33% of the whole 
shuffle process. Task locality is one of the main performance indicators of Spark. 
4.2 Our approach 

In this paper, we use I k v⊆ ×  to represent the intermediate data from map tasks, where k  and v  are 
respectively the sets of keys and values. We define that a cluster is formalized as a subset containing 
all key/value tuples with a specific key: {( , ) }, ,kC k v I k K v V= ∈ ∈ ∈ . The partition for intermediate data 
is determined by the partitioning algorithm: : {1,..., }F K p→ .The intermediate results are split into p 
partitions according to the keys of the tuples. We define the partition as: 

: ( )

( ) ( )
k K F k j

P j C k
∈ =

= =


. 

With the delay scheduling [12], we can get the global distribution information of the data before 
the shuffle and then we partition the data. The architecture is shown in Fig3. 
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Fig. 3 Architecture of Spark 

 
As depends on multiple child partitions, shuffledRDD doesn’t has the preferredLocation. In order 

to improve the local level of the task, we schedule the task to the node which achieves the largest 
partition. For a given K, we calculate the variance of the amount of data distributed on each node. 
Where n is the number of node, and iMean  represents the mean of the i-th datasets. For a specific key 
to achieve the best locality, we select the node with maximum frequency. 

During the partition process, we use the data cluster as the unit. Because this can not only 
guarantee a task to deal with a partition, but also avoid the large partitions. For a specific key when 
the variance of the partition is the smallest, it is accepted. After selecting the node, it moves on to the 
next key. 

Since the amount of data in the Spark is very large, the number of datasets (the number of keys) 
will be large. All using the above partition strategy, will take up too much time. For the large K, there 
is no need to partition, we labeled as a separate partition. And we partition the small k according the 
default partition. The partition strategy is as shown in algorithm 1. 
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Fig. 4 Local-based partitioning 

5. Experimental evaluation 

Our experiments are performed on a cluster consisting of six nodes running Spark 1.5.0 with a 
separate master node. All these nodes have 4-core 2.49GHZ CPU, 24GB of RAM, and one 1.2T disk 
driver. And all of nodes are connected by 1Gbps Ethernet network. The operating system on these 
nodes is Centos, with kernel version 2.6.32-642, and the JDK version is jdk-8u91-linux-i586.Storage 
nodes use HDFS(Hadoop 2.6) as DFS and YARN as the resource negotiator. And the initial 
distribution of data is shown in the following Table 1 

 
 K0 K1 K2 K3 K4 K5 K6 K7 K8 

Node1 15 15 10 6 19 4 1 5 0 
Node2 25 15 7 7 5 2 3 10 1 
Node3 13 24 15 10 9 1 1 1 1 

In the experiment, we compare Locality-based partitioning to Hash partitioning .The results shows 
in table 2 and table 3. 

Table 2 Hash partitioning 
 K0 K1 K2 K3 K4 K5 K6 K7 K8 

Node1 53 0 0 23 0 0 5 0 0 
Node2 0 54 0 0 33 0 0 16 0 
Node3 0 0 32 0 0 7 0 0 2 

 
Table 3 Localit-based partitioning 

 K0 K1 K2 K3 K4 K5 K6 K7 K8 
Node1 53 0 0 23 0 0 5 0 0 
Node2 0 54 0 0 33 0 0 16 0 
Node3 0 0 32 0 0 7 0 0 2 

As can be seen in the tables, each cluster can only be assigned to one partition.Using 
Locality-based partitioning, the keys which will be locally partitioned on each of the three nodes are 
44%, 50%, and 46% respectively, with an average of 47%, and 50% improvement of the data locality 
in Hash partitioning as shown in table1.Subsequently, Locality-based partitioning reduces the 
amount of data transfer by 24%, 120 keys were shuffled. More importantly, Locality-based 
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partitioning achieved very close to optimal data distribution of reduces’ inputs, 74, 74, and 77 
respectively. 

Experiment verifies that the balanced-schedule strategy can improve shuffle efficiency and reduce 
the job completion time. 

6. Conclusions 
By identifying the shuffle phase bottlenecks specific to spark, this paper propose the 

Locality-based partitioning. Experimental results show that the Locality-based partitioning can 
deliver a better improvement over Spark in different job. Stragglers are a common occurrence in 
clusters with many clusters reporting significantly slow tasks despite many prevention and 
speculation solutions. A Facebook trace from 2010[15] shows that less than 60% of tasks achieve 
locality even with three replicas. In the future work, we will focus on the stragglers and improve the 
task locality to minimizes the time it takes to transfer all remote inputs. 
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