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Abstract. In this paper, the problem of passivity of discrete-time neural networks with leakage and 
time-varying delays is investigated. By constructing a novel Lyapunov-Krasovskii functional and 
reciprocally convex method, some sufficient passivity conditions are obtained in the forms of linear 
matrix inequalities. In order to illustrate the effectiveness of the proposed results, a numerical 
example is presented. 

1. Introduction 

It is well known that the neural networks are very important since they have been widely applied in 
various areas, such as combinatorial optimization, pattern recognition and so on [1-2]. On the other 
hand, time delay is unavoidable in real systems and they often bring about instability, oscillation or 
divergence in neural networks. Therefore, a lot of interesting results on stability analysis for delayed 
system have been obtained in the literature [3-7]. 

It should be mentioned that many neural networks are focused on continuous-time cases. However, 
discrete-time systems are more suitable for computer computation and simulation. Thus, it is 
necessary and important to research the dynamics of discrete-time systems, and a large number of 
results have been achieved [4-5]. For instance, Kang et al. [4] proposed the stability criteria for the 
discrete-time system with time varying delay by means of Lyapunov-Krasovskill functional theory ，
reciprocally convex approach and linear matrix inequalities technique.  
   Passivity is a significant concept that represents input-output feature of dynamic systems. In the 
past several decades, the passivity theory has found successful applications in various areas such as 
signal processing, stability and fuzzy control. Thus, the passivity problem for time-delay neural 
networks has received considerable attention [1-2, 6]. In [1-2], the problem of passivity for 
continuous-time neural networks with time-delay was studied by using the linear matrix inequality 
technique. In [6], some sufficient passivity conditions have been obtained for discrete-time stochastic 
neural networks with time-varying delays in terms of linear matrix inequality by utilizing the 
Lyapunov functional method. However, there are still a lot of rooms for further decreasing the 
conservatism. 

Motivated by the above discussion, the problem of passivity for discrete-time neural networks 
with leakage and time-varying delays is studied in this paper. By employing a new 
Lyapunov-Krasovskii functional and reciprocally convex approach, some improved conditions are 
obtained in terms of linear matrix inequalities. Finally, a numerical example is provided to illustrate 
the effectiveness of the proposed method. 

2.  Problem statement and preliminaries 

In this paper, we consider the following discrete-time neural networks with time-varying delays: 
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Where ( ) ( ) ( ) ( )1 2, , ,
T

nx k x k x k x k=    is the neural state vector of the system, ( )1 2=diag , , , nC c c c is 
a selt-feedback connection matrix. ( )= ij n n

A a
×

, ( )= ij n n
B b

×
are the connection weight and the delayed 

connection weight matrices. ( )( ) ( )( ) ( )( ) ( )( )1 1 2 2=
T

n nf x k f x k f x k f x k  ， ， ， is the nonlinear activation 
function, ( )u k is the input, ( )y k represents the output of the network. ( )kτ denotes the discrete 
time-varying delay and satisfies ( ) ,  m Mk k Nτ τ τ≤ ≤ ∈ , where ,m Mτ τ are known positive integers.  
Assumption 1 The transformed neuron acfivation functions satisfies: 
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Where +
j jl l−， are known real constants. 

To obtain our results, we need introduce the following definition and lemma. 
Definition 1[6] The system is said to be passive if there exists a scalar 0γ > satisfying 
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For all 0k N∈ and under the zero initial condition. 
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Where ( ) ( )( ) ( ) ( )= , ,
TT T T

m Mk x k k x k x kα τ τ τ − − −  . 

3.  Main results 

For the sake of simplicity of matrix and vector representation, ( )9 1, 2, ,9n n
ie R i×∈ =  are defined as 

block entry matrices (for example [ ]1 = 0 0 0 0 0 0 0 0 Te I ). The other notations are defined as 
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Theorem 1 For given integers ,m Mτ τ , the discrete-time neural networks (1) is passive, if there exist 

matrices ( ) 11 12
1 2

22

0 0 1,2,3 , 0, 0, 0i
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P R i Q Z Z
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, two positive diagonal matrices 

( )1 2, , , , 1, 2i i i niS diag s s s i= = , matrices 1 2 3, , ,U U U N , and the scalar 0,γ >  such the following 
matrix inequalities hold: 

  2

2
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     1 2 0.Ω +Ω <                                                                                 (3) 

1296

Advances in Engineering Research (AER), volume 130



Where  

[ ] ( )
( ) ( ) ( )

1 2 6 7 9 2 6 7 9 1 1 2 3 1 2 1 2

2 2
3 2 3 5 3 5 1 1 2 2 8 1 2 8

2 2 2
1 1

3 3 4 2 4
1

2

=

      + 1 1

2
     

     

TT T T T T

T T T T T
Mm Mm m m

T T

T T

e C e A e B e P e C e A e B e e R R R e e R e

e R e e R e Q Q e Z Z e

Z N N Z N Z N
Z Z

Z N
Z

Z

τ τ τ τ

 Ω + + + + + + + + + − 

− − + P P − + P P + +

 − + + − −
−   −P P −P − P   −   − 





 

2 1 2 2 2 1 2 2
1 1 2 2

2 2

T TS L S L S L S L
S S

− −   
−P P −P P   

    

        

 [ ] ( )2 1 1 2 2 8 3 2 6 7 9 8=
TT T TeU e U e U e C I e A e B e e Ω + + − + + + −      

 [ ] [ ] [ ] [ ]1 1 5 2 4 6 3 1 3 4 4 3 5= , , = , , = , , = , ,e e e e e e e e eΠΠΠΠ                                                       

Proof  Consider the following  Lyapunov-Krasovskii functional: ( ) ( )
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Then, taking the differences of ( )iV k along the trajectories of the system (1), it yields 
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By Jensen inequality and Lemma 1, we can get  
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Where ( ) ( )( ) ( ) ( )= , ,
TT T T

m Mk x k k x k x kα τ τ τ − − −   

From Assumption 1, for the diagonal matrices ( )1 2, , , , 1, 2k k k nkS diag s s s k= = , we can receive 
the following inequalities: 
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On the other hand, for any matrices 1 2 3, ,U U U with appropriate dimensions, we can get 
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Therefore, from (5 ) to ( 13), we have 
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The proof is completed. 

4 Numerical example 

 Example 1 Consider the system (1) with the following parameters 
0.5 0 0.001 0 0.1 0.01

, ,
0 0.6 0 0.005 0.2 0.1

C A B
−     

= = =     − −     
. 

The activation functions are taken as  
  ( ) ( ) ( )1 2 tanhf x f x x= = . 
For this example, in simulation let 

 ( ) [ ] ( ) ( )0 0.3, 0.2 , sin ,cos , 6 4sin , 0
2 2 2

T
T k k kx u k kπ π πτ δ      = − = = + =            

， 

the state trajectories without  input ( )u k  and with ( )u k  can be seen in Figs 1 and 2. 

5 Conclusions  
In this paper, the problem of passivity analysis for discrete-time neural networks with leakage and 
time-varying delay has been investigated. The presented sufficient conditions are based on the 
Lyapunov method and the reciprocally convex technique. Finally, a numerical example is given to 
show the effectiveness of the proposed criteria. It should be worth mentioning that the proposed way 
can be extensively applicable in many other areas. 
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