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Abstract—Based on the CVaR measure, this paper introduces a 
Cooperation and Competition model for the risk management of 
the two-stage supply chain. It is supposed that both the supplier 
and the retailer are risk-averse and their objectives are to 
minimize their own CVaR(Conditional Value-at-Risk) objective 
instead of the expected profit. We introduce an e* − optimal 
equilibrium solution to this model, which implies the supplier and 
the retailer should give up a same value no more than e* for their 
cooperation. It is proved that the e*−optimal equilibrium solution 
can be obtained by solving a corresponding mathematical 
programming problem. Numerical results show that this method 
is efficient to improve the risk management of the two-stage 
supply chain. 

Keywords-conditional value-at-risk; equilibrium solution; 
supply chain management; risk management 

I.  INTRODUCTION  
With the growing emphasis on globalization, supply chain 

management has been applied to many fields, such as 
production plan and financial management[1-2]. In order to 
alleviate the bad effects of supply chain disruptions that caused 
by various unpredictable risks, people introduced many risk 
control methods to improve the risk management of the supply 
chain[3]. In 2000, the CVaR measure was introduced to solve 
the portfolio optimization problems and subsequently proved to 
be an efficient method for risk management[4-5]. Thus some 
researchers introduced the CVaR measure into the supply chain 
management and some interesting results are achieved[6-11]. 
Chen X. et al.[6] proposed a model based on CVaR measure for 
the newsvendor model and obtained the optimal order quantity 
for the retailer with no shortage penalty to maximize his CVaR 
objective. Xu Minghui et al.[7] extended the model proposed in 
[6] and obtained the optimal order quantity with shortage 
penalty for the retailer to maximize his CVaR objective. Gotoh 
and Takano[8] provided analytical solutions and linear 
programming formulation of the minimization of CVaR in the 
newsvendor model. Cheng et al.[9] introduced a bilevel 
programming model with the CVaR objective for the two-stage 
supply chain. Hsieh and Yu-Ting[10] characterized the retailer’ 
risk-embedded objective via CVaR measure and studied return 
policy of the manufacture and the optimal decision of the 
retailer. Caliskan-Demirag et al.[11] analyzed a suppler’s 
customer and retailer rebates in the context of modeling 
aversion by adopting CVaR measure. In general, most of the 
related literature assume that the supplier is risk-neutral and 
aims to maximize his expected profit or minimize his expected 
loss. However, many suppliers in the real world are risk-averse 

and want to reduce the potential risks, while such an issue is 
always been ignored. 

In view of the above issue, this paper assumes that both the 
supplier and the retailer in the two-stage supply chain are risk-
averse, and their objectives are to minimize their own CVaR 
objective. We propose a Cooperation and Competition model 
for the two-stage supply chain. In this model, the supplier 
decides the wholesale price while the retailer decides the order 
quantity. They compete with each other to minimize their own 
CVaR objective while they cooperate to get more profits. We 
introduce an e*-optimal equilibrium solution to this model, 
which implies the supplier and the retailer should accept the 
same concession no more than e* for their cooperation. It is 
proved that the e*-optimal equilibrium solution can be obtained 
by solving a corresponding mathematical programming 
problem. Then this model provides an efficient method to 
coordinate the decisions of the supplier and the retailer in a 
two-stage supply chain. 

The rest of this paper is organized as follows. Section II 
introduces the notation in this paper and some preliminaries. 
Section III introduces the proposed model and its solutions. In 
Section IV, a numerical example is given to illustrate the 
performance of the proposed model, with conclusions given in 
Section V. 

II. THE NOTATION AND SOME PREPARING RESULTS 

A. The Notation 
Firstly, we introduce the notation as follows: 

x denotes the wholesale price of unit product 
b denotes the cost of unit product for the supplier 
a denotes the maximal wholesale price of unit product 
t denotes the excess penalty coefficient for the supplier 
y denotes the retailer’s order quantity 
r denotes the salvage price of unit product 
s denotes the shortage penalty price of unit product 
n denotes the retailer’s minimal order quantity 
N  denotes the retailer’s maximal order quantity 
ξ  denotes the stochastic price of the product 
η  denotes the stochastic demand of the product 

1π denotes the objective of the supplier 

2π denotes the objective of the retailer. 
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B. VaR and CVaR 
Value-at-Risk (VaR) is a popular risk control measure 

which has achieved high status of being written into industry 
regulations. For a decision x , let ),( ξxl be the loss associated 
with the decision x and the random variable ξ . For the 
confidence level α , the α -VaR with x  is defined as 

{ }{ }αξα ≥≤∈= cxlRyxVaR ),(Prmin)( ,            (1) 

where { }cxl ≤),(Pr ξ denotes the probability of ),( ξxl  

below the value c . )(xVaRα  represents the minimum loss of 
the decision maker under the confidence level α . Artzner et 
al.[12] and Mauser et al.[13] pointed out that VaR has some 
undesirable mathematical characteristics such as non-
subadditivity and non-convexity, which always hinder its 
efficient usage in practice. Therefore Rockafellar and 
Uryasev[4-5] introduced another famous risk measure — 
Conditional Value-at-Risk, which is defined as the expected 
value of loss above the )(xVaRα . CVaR has some attractive 
properties such as coherence and convexity, which makes it is 
widely used in risk management. The CVaR with x can be 
defined as 

[ ])(),(),()( xVaRxlxlExCVaR αα ξξ ≥=  

                      = ∫ ≥− )(),(
)(),(

1
1

xVaRzxl
dyzfzxl

αα
,       (2) 

where )(⋅f  is the probability density function of ξ and 

)(xVaRα is defined by (1). Rockafellar and Uryasev [3] 

introduced the following auxiliary function 

           ])),([(
1

1),,( +−
−

+= uxlEuuxF ξ
α

ξ               (3) 

and proved that the minimum of CVaR can be obtained by 
minimizing this auxiliary function ),,( uxF ξ . 

III. THE PROPOSED MODEL 
For the two-stage supply chain consisting of a supplier and 

a retailer, we first give a description on the decision framework 
of the supplier and the retailer. For the supplier, we assume that 
he is risk-averse and his objective is to minimize the following 
CVaR  objective 

∫ ≥−
=

)(),,(
)(),,(

1
1)(

xVaRzyxL
dzzzyxLxCVaR

α

φ
αα  

where 
++ −+−= )()(),,( ξξξ xtyxyyxL                            (4) 

is the loss of the supplier, )(⋅φ is the density function of ξ  and 
α is the confidence level. Here, the first term in the right hand 
of (4) represents the loss of the supplier when he gives a low 
wholesale price, while the second does the loss when he gives a 

high wholesale price. There are the following constraints about 
the supplier’s wholesale price x .  .,, axxbxr <<<  

For the retailer, we also assume he is risk-averse and his 
objective is to minimize the following CVaR objective 

∫ ≥−
=

)(),,(
)(),,(

1
1)(

yVaRzyxl
dzzzyxlyCVaR

β

ϕ
ββ

, 

where    ++ −+−−= )())((),,( ysyrxyxl ηηη           (5) 

is the loss of the retailer, )(⋅ϕ is the density function of η  and 
β  is the confidence level. Here, the first term in the right hand 
of (5) represents the loss of the retailer for excess order, and the 
second does the shortage penalty for the lost sales of the retailer. 
There is the following constraint about the retailer’s order 
quantity y . .Nyn ≤≤ Then we introduce the Cooperation 
and Competition (CC) model as follows: 

(PM)min ∫ ≥−
=

)(),,(1 )(),,(
1

1),(
xVaRzyxL

dzzzyxLyx
α

φ
α

π  

         s.t. .,, axxbxr <<<  

(PR) min ∫ ≥−
=

)(),,(2 )(),,(
1

1),(
yVaRzyxl

dzzzyxlyx
β

ϕ
β

π   

         s.t. .Nyn ≤≤  

In order to solve this model, we introduce ),,( uyxf and 
),,( vyxg  as follows: 

])),,([(
1

1),,( +−
−

+= uyxLEuuyxf ξ
α

, 

])),,([(
1

1),,( +−
−

+= vyxlEvvyxg η
β

. 

With the result in II.B, the CC model is transformed into 

(PM) min ])),,([(
1

1),,( +−
−

+= uyxLEuuyxf ξ
α

  

        s.t. .,,, Ruaxxbxr ∈<<<  

(PR) min  ])),,([(
1

1),,( +−
−

+= vyxlEvvyxg η
β

 

        s.t. ., RvNyn ∈≤≤  

Now, we will introduce an optimal solution to the CC 
model and show how to obtain this optimal solution. For the 
problem (PM), let ),,2,1( Ikk ⋅⋅⋅=ξ be the thk − value of the 
stochastic variable ξ . Then the problem (PM) can be 
transferred into the following mathematical programming: 

(PM) min ])),,([(
1

1),,( +−
−

+= uyxLEuuyxf ξ
α
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I
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1)1(

1
α

 

         s.t. ,0, 1211 ≥−+≥ kkkk zutywywz  

               ,0,,0, 2211 ≥−≥≥−≥ kkkkkk wxwwxw ξξ  

               .,,2,1 Ik ⋅⋅⋅= .,,, Ruaxxbxr ∈<<<                

For the problem (PR), let ),,2,1( Jkk ⋅⋅⋅=η be the 
thk − value of the stochastic variableη .Then the problem 

(PR) can be transferred into the following mathematical 
programming: 

(PR) min ])),,([(
1

1),,( +−
−

+= vyxlEvvyxg η
α

 

                                   ∑
=−

+=
J

k
kz

J
v

1
2)1(

1
α

               

        s.t. ,0,)( 2432 ≥−+−≥ kkkk zvswwrxz                                                                                                                                                                         

             ,0,,0, 4433 ≥−≥≥−≥ kkkkkk wywwyw ηη  

             .,,2,1 Jk ⋅⋅⋅=     ., RvNyn ∈≤≤  

Let
{ }RvRuNynpxxbxrvuyxX ∈∈≤≤<<<= ,,,,,),,,( be 

the feasible set to the CC model. We introduce the following 
definition. 

Definition (1). For any Xvuyx ∈),,,( , if it 

satisfies ),,,,(),,,( **** vuyxfvuyxf ffff ≤  

),,,,(),,,( **** vuyxgvuyxg gggg ≤ ),,,( ****
ffff vuyx  

 is called an optimal joint solution of the supplier 
and ),,,( ****

gggg vuyx is called an optimal joint solution of the 

retailer. Moreover, ),,,( *****
ffff vuyxff =  is called the 

optimal joint value of the supplier  and  
),,,( *****

gggg vuyxgg = is called the optimal joint value of the 
retailer. 

Obviously, ),,,( ****
ffff vuyx  is an optimal decision of the 

supplier while ),,,( ****
gggg vuyx is an optimal decision of the 

retailer. If ),,,( ****
ffff vuyx  equals to ),,,( ****

gggg vuyx  , it is 
best for the supplier and the retailer to choose the same 
decisions. However, since the objectives of the supplier and the 
retailer are always conflict, ),,,( ****

ffff vuyx is always 

different with ),,,( ****
gggg vuyx . Then we introduce the 

following definition. 

Definition (2). Let *f be the optimal joint value of the 

supplier and *g be the optimal joint value of the retailer. 
For 0≥e and Xvuyx ∈),,,( , if it satisfies 

** ),,,(,),,,( gevuyxgfevuyxf ≤−≤− , ),,,( vuyx  

is called an e −equilibrium solution of the supplier and retailer. 
e is called an equilibrium value of the supplier and retailer. 

The e -equilibrium solution provides the same concession 
value e that the supplier and retailer need to give away for their 
cooperation. If e  = 0, the e −equilibrium solution turns out to 
be the optimal joint solution for the supplier and the retailer. 

Lemma (1). Let *f be the optimal joint value of the 

supplier and *g  be the optimal joint value of the retailer. For 

any Xvuyx ∈),,,( '''' , ),,,( '''' vuyx is an 'e -equilibrium 
solution for the supplier and the retailer, where 

}),,,(,),,,(max{ *''''*''''' gvuyxgfvuyxfe −−= . 

Proof. By the assumption, it follows that 
'*'''''*'''' ),,,(,),,,( egvuyxgefvuyxf ≤−≤− , 

which implies 
*'''''*''''' ),,,(,),,,( gevuyxgfevuyxf ≤−≤− . 

It follows with definition (2) that ),,,( '''' vuyx  is an 'e -
equilibrium solution of the supplier and the retailer. This 
completes the proof. 

By Lemma III.A, there exists an equilibrium value e for 
each point ),,,( vuyx  in X such that ),,,( vuyx becomes 
an e -equilibrium solution of the supplier and the retailer. In 
fact, we are interested in the minimum of all the equilibrium 
values. 

Definition (3). Suppose that the set of all the equilibrium 
values of the supplier and retailer is denoted by E . If *e is the 
minimum element in E and ),,,( **** vuyx  is an *e -
equilibrium solution of the supplier and the retailer, 

),,,( **** vuyx  is called an *e − optimal equilibrium solution 

of the supplier and the retailer. *e is called an optimal 
equilibrium value of the supplier and the retailer. 

The *e −optimal equilibrium solution provides the minimum 
concession *e  both the supplier and the retailer need to give 
away. It is fair for the cooperation between the supplier and the 
retailer and both the supplier and the retailer gives the 
minimum concession for their cooperation. In order to obtain 
the *e -optimal equilibrium solution of the supplier and the 
retailer, we first give the following result. 
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Theorem (1). Suppose that the feasible set X is compact, 
and both )(⋅f and )(⋅g are continuous. There exists an *e -
optimal equilibrium solution of the supplier and the retailer. 

Proof. By Lemma (1), it is obvious that Φ≠E . We will 
prove that E  is closed. Suppose that the sequence{ } Eek ∈  

satisfies 'lim eekk =+∞→ and Xvuyx kkkk ∈),,,( is an ke - 

equilibrium solution of the supplier and the retailer. Since X  
is compact, there exists a subsequence )},,,{( 1111

kkkk vuyx  in 

the sequence )},,,{( kkkk vuyx such that )},,,{( 1111
kkkk vuyx  

is convergent. Without loss of generality, we assume that 
Xvuxcvuyx kkkk ∈→ ),,,(),,,( , it follows with 

definition  (2)  that  ,),,,( *fevuyxf kkkkk ≤−  

,),,,( *gevuyxg kkkkk ≤− ⋅⋅⋅= ,2,1k . 

Since f and g  are continuous, it follows with +∞→k  

that ,),,,( *' fevuyxf ≤− *'),,,( gevuyxg ≤− . 

Xvuyx ∈),,,( is an 's -equilibrium solution, and this proves 
tha E is closed. Since it satisfies 0≥e for any Ee∈ , there 
exists the minimum element *e which becomes the optimal 
equilibrium value. The corresponding *e − equilibrium solution 
turns to be the *e -optimal equilibrium solution of the supplier 
and the retailer. This completes the proof. 

By Theorem (1), there always exists an *e -optimal 
equilibrium solution of the supplier and the retailer. Let *X  
denotes the set of all the *e -optimal equilibrium solutions of 
the supplier and the retailer. We have the following result. 

Theorem (2). If X , f  and g are convex, *X  is convex.  

Proof. For any XXzz ⊂∈ *
21,  and )1,0(∈λ , it follows 

with the convexity of X that  Xzzz ∈−+= 21 )1( λλ .We 

will prove that *Xz∈ . Let *e be the optimal equilibrium 
value of the supplier and the retailer. Since *

21, Xzz ∈ , it 
follows      **

1
**

1 )(,)( gezgfezf ≤−≤− , 

                  **
2

**
2 )(,)( gezgfezf ≤−≤− , 

which implies **
1

**
1 )(,)( egzgefzf +≤+≤ , 

                      **
2

**
2 )(,)( egzgefzf +≤+≤ . 

Since f and g  are convex, it follows 
**

2121 )()1()())1(()( efzfzfzzfzf +≤−+≤−+= λλλλ
**

2121 )()1()())1(()( egzgzgzzgzg +≤−+≤−+= λλλλ

that is **** )(,)( gezgfezf ≤−≤− ,which implies z is 

an *e -optimal equilibrium solution of the supplier and the 
retailer. Thus *Xz∈ and *X is convex. This completes the 
proof. 

By Theorem (2), we have the following result. 

Corollary (1). Suppose that X is convex, and both 
)(⋅f and )(⋅g  are strictly convex. Then the *e -optimal 

equilibrium solution of the supplier and the retailer is unique. 

Now, we will show how to find the *e −optimal equilibrium 
solution of the supplier and the retailer. First, we will introduce 
the following mathematical programming problem (PE) 

(PE)    min     e  

            s.t. *),,,( fevuyxf ≤− , *),,,( gevuyxg ≤− ,  

           Xvuyx ∈),,,( . 

Then we have the following result. 

Theorem (3). Suppose that )),,,,(( ***** evuyx is an 

optimal solution of problem (PE). Then ),,,( **** vuyx is 

an *e -optimal equilibrium solution of the supplier and the 
retailer. 

Proof. Suppose that )),,,,(( ***** evuyx is an optimal 
solution of problem (PE). It follows with the constraint 
conditions of (PE) that     ****** ),,,( fevuyxf ≤− , 

****** ),,,( gevuyxg ≤− ,       Xvuyx ∈),,,( **** . 

Then it follows with definition (2) that ),,,( **** vuyx is 

an *e −equilibrium solution of the supplier and the retailer. Let 
),,,( '''' vuyx  be an 'e − optimal equilibrium solution of the 

supplier and the retailer, then it follows with definition (3) that 
*' ee ≤ . Besides, )),,,,(( ''''' evuyx is a feasible solution to 

problem (PE) since it satisfies the constraint conditions of 
problem (PE). This implies '* ee ≤  since )),,,,(( ***** evuyx  

is an optimal solution of problem (PE). Then we have *' ee =  
and ),,,( **** vuyx turns to be an *e -optimal equilibrium 
solution of the supplier and the retailer. This completes the 
proof. 

By Theorem (3), we can obtain the *e -optimal equilibrium 
solution of the supplier and the retailer by solving the 
corresponding problem (PE). In reality, the supplier and the 
retailer may be want to give different concession values for 
their cooperation. For such a case, we have the following 
definitions. 
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Definition (4). Let *f be the optimal joint value of the 

supplier and *g be the optimal joint value of the retailer. 
For 0≥e and Xvuyx ∈),,,( , let 0),( 21 >= www  be the 
concession weight of the supplier and the retailer. If it satisfies 

*
1),,,( fewvuyxf ≤− , *

2),,,( gewvuyxg ≤− , 

),,,( vuyx is called an e − equilibrium solution of the supplier 
and the retailer with respect to w . e  is called an equilibrium 
value of the supplier and the retailer with respect to w .The set 
of all the equilibrium values of the supplier and the retailer with 
respect to w  is denoted by wE . 

Definition (5). For the concession weight 
0),( 21 >= www , let *e be the minimum element in wE  

and ),,,( **** vuyx   be an *e − equilibrium solution of the 
supplier and the retailer with respect to w. Then 

),,,( **** vuyx  is called an *e -optimal equilibrium solution 

of the supplier and the retailer with respect to w . *e is called an 
optimal equilibrium value of the supplier and the retailer with 
respect to w . 

For the CC model and 0),( 21 >= www , we introduce the 

following corresponding wCC  model as follows: 

(PM) min   ),,,(1),,,(
1

vuyxf
w

vuyxfw =                                          

                                           ]])),,([(
1

1[1

1

+−
−

+= uyxLEu
w

ξ
β

 

           s.t. .,,, Ruaxxbxr ∈<<<  

(PR) min  ),,,(1),,,(
2

vuyxg
w

vuyxgw =      

]])),,([(
1

1[1

2

+−
−

+= vyxlEv
w

η
α

 s.t. ., RvNyn ∈≤≤  

Then we have the following result. 

Theorem (4). For 0),( 21 >= www , suppose 
that ),,,( vuyx  is an e −  equilibriumsolution of the wCC  
model. Then ),,,( vuyx  is an e -equilibrium solution of 
CC model with respect to w . 

Proof. Let ),,,( vuyx be an e e -equilibrium solution of 

wCC  model, it follows with definition (2) that 

*

11

1),,,(1 f
w

evuyxf
w

≤− , *

22

1),,,(1 g
w

evuyxg
w

≤− , 

which implies 
*

1),,,( fewvuyxf ≤− , *
2),,,( gewvuyxg ≤− . 

Then ),,,( vuyx turns to be an e -optimal equilibrium 
solution of CC model with respect to w by definition (4). This 
completes the proof. 

By Theorem (4), we can obtain the e -equilibrium solution 
of the supplier and the retailer with respect to w by computing 
the e -equilibrium solution of the corresponding wCC model. 

We define the mathematical programming problem )( wPE as 
follows : 

)( qPE   min    e  

               s.t. *
1),,,( fewvuyxf ≤− , *

2),,,( gewvuyxg ≤− , 

                    Xvuyx ∈),,,(                     . 

Then the following result is achieved. 

Theorem (5). For 0),( 21 >= www , suppose that 

)),,,,(( ***** evuyx  is an optimal solution of problem 

)( wPE . Then ),,,( **** vuyx is an *e -optimal equilibrium 
solution of the supplier and the retailer with respect to w . 

For 0),( 21 >= www , we can obtain the *e -optimal 
equilibrium solution of the supplier and the retailer with respect 
to w by solving the corresponding problem )( wPE . 

IV. NUMERICAL EXAMPLE 

In order to illustrate the efficiency of the CC model 
proposed in Section III, we will give a numerical example and 
some sensitivity analysis. 

Example (1): Considering the two-stage supply chain 
consisting of a supplier and a retailer. Suppose that the 
product’s stochastic price ξ subjects to the normal 

distribution )8.0,3( 2N and the the product’s stochastic 

demand η  subjects to the normal distribution )25,100( 2N . 
The corresponding parameters are given as follows: b=1, a=5, n 
= 80, N = 120. For r = 0.5, s = 1 and α = β = 0.80, let t = 0.1, 
t = 0.3 and t = 0.5, respectively. The results from the CC model  
under the above conditions are listed in Table I. 

TABLE I.   RESULTS FROM THE CC MODEL WITH  
R = 0.5, S = 1 AND Α = Β = 0.80 

 
t x y *f  *g  1π  2π  *e  

0 2.68 80 9.09 16.27 39.93 47.11 30.84 

0.3 2.54 80 23.08 16.27 50.94 44.13 27.86 

0.5 2.44 80 33.33 16.27 59.01 41.95 25.68 

By Table I, it is easily found that when the supplier’s excess 
penalty coefficient t increases, the supplier’s wholesale price 
x  will decrease, and the optimal equilibrium value *e  will 
decrease, too. If t increases, the supplier’s loss will increase 
when he gives a high wholesale price. Then the supplier should 
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better give a smaller wholesale price to ensure the future 
cooperation with the retailer. 

For t = 0.3, r = 0.5 and s = 1, let α = β = 0.80, α = β = 
0.85 and α = β = 0.90, respectively. The results from the CC 
model under the above conditions are listed in Table II. 

TABLE II.   RESULTS OF THE EXAMPLE WITH  
T = 0.3, R = 0.5, AND S = 1 

α  β  x  y  *f  *g  1π  2π  *e  

0.80 0.80 2.54 80 23.08 16.27 50.94 44.13 27.86 

0.85 0.85 2.52 80 28.85 20.33 52.29 43.77 23.44 

0.90 0.90 2.49 80 38.54 27.17 54.53 43.16 15.99 

By Table II, it is easily found that when the confidence 
levels α  and β increase, the supplier’s wholesale price will 

decrease and the optimal equilibrium value *e will decrease, 
too. The confidence levels α and β indicate the risk 
preferences of the supplier and the retailer, respectively. When 
α  and β  grow bigger, the supplier and the retailer becomes 
more risk-averse. In such a case, the supplier should give a 
smaller wholesale price and the optimal equilibrium value *e  
will decrease. 

For t = 0.3, r = 0.5, s = 1 and α = β = 0.80, let 
),( 21 www =  = (0.67, 0.33), ),( 21 www = = (0.75, 0.25) and 

),( 21 www = = (0.80, 0.20), respectively. The results from the 
CC model under the above conditions are listed in Table III.  

TABLE III.   RESULTS OF THE EXAMPLE WITH  
R = 0.5, S = 1 AND Α = Β = 0.80 

),( 21 ww  x  y  *f  *g  1π  2π  *e  

(0.67,0.33) 1.61 81.51 23.08 16.27 42.10 25.78 28.53 

(0.75,0.25) 1.48 83.07 23.08 16.27 44.04 26.75 31.44 

(0.80,0.20) 1.39 84.25 23.08 16.27 45.36 27.41 33.42 

By Table III, it is found that when the value of
2

1

w
w

 

increases, which implies the supplier gives more concessions in 
the cooperation, the supplier’s wholesale price will decrease. 
For such a case, the retailer’s order quantity will increase and 
the optimal equilibrium value *e  will increase, too. 

To summarize this section, we can conclude that the 
proposed method is efficient to enhance the cooperation 
between the supplier and the retailer. Both the supplier and the 
retailer will do their best to cooperate with each other. The *e − 
optimal equilibrium solution provides a fair solution to the 
supplier and the retailer and can ensure the minimum 
concession in their cooperation. 

V. CONCLUSIONS 
In this paper, we introduce a Cooperation and Competition 

model for the risk management of the two-stage supply chain 
consisting of a supplier and a retailer. This model considers the 
risk aversion of the supplier and the retailer by introducing the 
CVaR objective. The *e −optimal equilibrium solution to this 
model can coordinate the decisions of the supplier and the 
retailer and enhance their cooperations. Thus this paper also 
contributes to the risk management of the two-stage supply 
chain.  
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