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Abstract. In this study, an experimental platform for observing the real-time performance of control 

algorithms is designed using rapid control prototyping. Details of the use of the platform, as well as the 

design and debugging process for the Ballbot controller are presented. The platform achieves seamless 

connection between the simulation and the actual system. This means that engineers can quickly and 

easily observe the true performance of their algorithm, which ensures an ideal research platform for 

control theory application and optimization. 

1. Introduction 

The Ballbot self-balanced control platform is a dynamic experimental platform based on a ball-type 

self-balanced robot designed using rapid control prototyping. It facilitates the development of robots 

and accelerates the process of debugging. 

A Ballbot is a dynamically stable mobile robot designed to balance on a ball. Owing to its special 

power mechanism, a Ballbot is an omnidirectional mobile robot. It works on the same principle as an 

inverted pendulum. To guarantee its agility and maneuverability, the stability of the whole system is 

crucial. 

The robot control platform is proposed to promote the efficiency of modelling and design of actual 

systems. Such a platform could seamlessly connect the simulation model with the actual system, so 

that engineers can easily design algorithms for simulation models and connect them to the actual 

system.  

To implement the robot control platform and validate its functionality, the following work has been 

done in this study: 

(1) The design of the hardware platform: we determine the layout for the electrical and mechanical 

subsystems necessary to manufacture the functional robot. The configuration of an electrical 

subsystem associated with the mechanical subsystem is introduced to establish a solid foundation of 

total system. 

(2) The code generation framework: the driver code is wrapped by an S-function to make it 

available to code generation modules, thus forming a bridge between the MATLAB environment and 

the robot hardware [1, 2]. 

(3) The creation of the simulation model: we model the entire robot system through physical 

modeling. The physical model will contain the complete mechanical, electrical, and control parts as 

well as the actual system. 

(4) Experiment: the real-time interaction between the control platform and the actual system is 

described in this section. In addition, comparison between simulation results and actual system 

behavior is made in order to verify the feasibility of our platform. 

2. Electromechanical system configuration 

A good electromechanical design is the basis for the proper functioning of an automatic control 

system. It involves a mechanical, electrical, and control component, with each part coupled to another, 

but all working relatively independently. 
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The overall configuration of the main body of the Ballbot is as shown in Fig. 1. It consists of a laser 

radar on the top that can explore the surrounding environment and build a map for navigation and 

planning purposes. The second layer is the main control subsystem, composed of a single broad 

computer, a wireless router and an inertial measurement unit. The third layer consists of two power 

lithium batteries. On the bottom of the main body, three drivers are assembled. 

 
Fig. 1 Overall configuration of Ballbot 

The electronic control system is mainly composed of sensors, actuators, and the controller (Fig. 2). 

The system communicates with the software platform on the PC through Wi-Fi to enable the wireless 

control of the robot. To obtain the current attitude of Ballbot, the 9-DOF sensor module is used. It 

provides both fused sensor data and raw data that can be handled by our own driver code. The electric 

drive subsystem uses the brushless DC motor 3564K024B and the matching motion controller 

MCBL3006S, which communicates with the CPU via CANopen. The single board computer is a 

Beaglebone-black open source platform (Debian 7.2) [3]. 

 
Fig. 2 Configuration of the electrical control system 

3. Code generation module 

Automatic code generation is the key to connecting simulation models to an actual system. 

MATLAB built-in blocks enable users to build their own algorithm. For the specific hardware driver, 

customized Simulink blocks are necessary to enable code generation [4]. These hardware driver blocks 

are packaged in the S-function [5]. This section is mainly concerned with the functioning of the sensor 

and motor block. 

Fig. 3 shows the sensor code generation block without a mask. The output of the block is two buses: 

the calculated attitude angle and the original sensor data [6]. 
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Fig. 3 Code generation module of the sensor 

The complete motor subsystem model is shown in Fig. 4. The motor input is the target speed and 

the output is the current speed of the motor and the current signal. To facilitate system debugging, we 

added the GPIO driver. Through the key, we can initialize, enable, and disable the driver system. 

Additionally, the subsystem includes an LED to indicate its working status. Users can dynamically 

adjust every motors' parameters of the speed and position closed loop controllers. 

 
Fig. 4 General mask of the motor system 

4. Physical modelling 

Unlike obscure mathematical equations, physical modeling provides a natural and efficient method 

to construct a system model. Physical models reveal the composition of the system structure in a way 

that can be intuitively understood. Each module corresponds to an actual physical device, such as an 

oil pump, a motor, or an operational amplifier, so the controlled object is no longer just a transfer 

function. The physical simulation model of Ballbot is shown in Fig. 5. 
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Fig. 5 Operation of robot system 

The weight of each part of the physical model should be consistent to ensure that the inertia 

parameters of the model are correctly calculated. As shown in Figure 6, the total weight of the body is 

8.565 kg, of which the omni-directional wheel weighs 0.275 kg and the ball weighs 2 kg. To design a 

model more similar to the real system, a driver must be incorporated. 

 
Fig. 6 Mass properties of Ballbot system 

In the actual system, the motor and the driver form a subsystem. The motor model includes a 

closed-loop speed controller. The actual parameters of the motor selected in this paper are shown in 

Table 1. A complete electrical drive system simulation model (Fig. 7) includes motors, a closed-loop 

controller, a gear box and omnidirectional wheels. It converts electrical energy into mechanical energy, 

laying a solid foundation for the success of the entire simulation. 

Table 1 Motor parameters 

Rated voltage:24 V Stall torque:371 mNm 

No-load current:0.189 A Rotor inertia:  

Mechanical time constant:11 ms No-load speed:11300 rpm 
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Fig. 7 Complete power drive system simulation model 

5. Control platform 

During system design, engineers should not only focus on control, but must maintain sight of the 

whole system [7]. 

After the algorithm is designed on the PC, it is run directly on the real-time target machine by 

automatic code generation. As a result of the seamless connection facilitated by the control system 

design software MATLAB, engineers can observe the performance of the control algorithm in real 

time and tweak the controller parameters. Further, they can compare simulation results and the actual 

response to accelerate the development process [8]. 

 
Fig. 8 Process for use of control platform 

Once software and hardware design, and the simulation part of the control platform are complete, a 

practical workflow that can effectively combine theoretical simulation with the actual system must be 

determined [9]. As shown in Fig. 8, the development process is an iterative design of the loop, which 

can make the algorithm better by continuous iteration optimization [10]. 

Step 1: Design control algorithm for the robot simulation model in the Simulink environment. 

Step 2: Replace the simulation model with the sensor and driver modules from the code generation 

library. Then, generate the code and download it to the real-time target in the Simulink environment. 

Step 3: When the program starts running in the target machine, it sends real-time running data to the 

host computer through the wireless network. Engineers can observe robot status and adjust the 

controller parameters in real time through Simulink external mode. 

Step 4: Using the data collected by MATLAB, we can compare the simulation results of the robot 

and the actual response. If control targets do not meet the requirements, then we return to the first step 

to optimize the algorithm. 
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6. Controller based on physical model 

After the simulation platform is built, it is necessary to design a closed-loop controller to guarantee 

equilibrium and maneuverability. The complete robot simulation model is shown in Fig. 9. It is mainly 

composed of the body of the robot, the Euler angle module, the system input, and the controller. 

 
Fig. 9 Complete simulation of Ballbot system 

The inputs to the controller module are the position reference signal, the angle feedback, and the 

angular velocity feedback, and the output is the motor speed signal. As shown in Fig. 10, the green box 

is the outer ring controller and the blue box is the inner ring controller, users only need to change their 

control algorithm within the module. The kinematic solution matrix can be used to alter the speed of 

each omnidirectional wheel by changing in the velocity in the reference coordinate system. 

 
Fig. 10 Controller of Ballbot 

To verify the performance of the controller, a series of signals is added to the input signals, in order 

to compare the input signal and the actual response. As shown in Fig. 11, the controller is still able to 

maintain the balance of the robot in complex situations. In general, the system response time is normal. 

 

Advances in Computer Science Research, volume 70

720



 

 

 
Fig. 11 Euler angles response of Ballbot 

7. Experiments 

The design process of the controller is based on the flow diagram shown in Fig. 8, and the first step 

of this process is done in Chapter 6. The second step, as shown in Fig. 12, involves transplanting the 

control algorithm. 

Figure 6-1 shows that the structure of the physical controller, which uses a double closed-loop PID 

controller, which is consistent with what is used in the simulation environment. In Fig. 12, the inner 

ring controller whose control period is 5 ms is depicted using a green font and the outer ring controller 

whose control period is 20 ms is depicted using a blue font. The difference in control period has been 

optimized to match the actual controller. 

 
Fig. 12 Controller for Ballbot balance 

The third step involves downloading the algorithm onto the target hardware during real-time 

operation. The actual control system of Ballbot is shown in Fig. 13. Engineers can transplant the 

algorithm without any code to be added to the model for the real system. 
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Fig. 13 Rapid control prototyping of Ballbot 

 

The fourth step involves collecting the data and analyzing the differences between the simulation 

model and the actual system. 

Series of signals are applied separately to the simulation model and the actual system. Fig. 14 

shows the robot's attitude angle response, where the red dotted line represents the given signal, the 

green solid line represents the simulation results, and the blue solid line represents the actual response. 

The simulation results are very close to the given signal. The actual response cannot be followed by a 

given signal, but the overall trend is consistent with the simulation results, which is acceptable, 

considering the non-linear factors present in the actual system [11]. 

Throughout the entire operating curve of the system, the simulation results are in good agreement 

with the actual response. To improve the performance of the actual system, further optimization can be 

accomplished by means of rapid control prototyping. 

The simulation results provide an intuition regarding the design aspect of the control system, and the 

experimental results help to determine the specific details. Through the analysis of the experimental 

results, it is found that the simulation model and the actual system are very different. The model cannot 

be completely accurate. To address this discrepancy, the simulation model may be built to understand 

the system characteristics. Subsequently, the specific parameters may be determined through the 

debugging process. 
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Fig. 14 Response of Ballbot attitude angle 

The simulation results of the motor speed are shown in Fig. 15. Their amplitude and overall trend 

can be consistent, however difference in noise and hysteresis will be observed. Noise is caused by 

random interference in practice, and hysteresis is caused by the difference between the actual system 

and the initial state of the simulation model. 

 

 

 
Fig. 15 Motor speed comparison 

8. Conclusion 

This work implements a control platform for Ballbot. We designed the controller and tested the 

performance of total system to optimize the simulation model and actual controller. The advantages of 

the control platform are shown experimentally. It is a powerful toolkit for the verification of the control 

method.  

The merits of the control platform are: 

(1) Graphical code generation allows engineers to quickly and easily change the algorithm without 

having to write a line of code. 

(2) Engineers can modify the controller parameters in real time and observe the actual operation 

effect of the algorithm. 

(3) Real-time operational data can be exported directly to facilitate follow-up study. 

The significance of the control platform is: 

(1) The seamless connection between MATLAB and the actual system ameliorates the difficulty of 

directly applying the controller designed for the simulation model to the actual system 

(2) It provides an ideal platform for the application and optimization of the control method. The 

control engineer is freed from the constraints imposed by various engineering problems and can now 

focus solely on the development of the control algorithm. 
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(3) The unified software platform makes the design of the controller more efficient and quick by 

allowing direct debugging of the actual system, thus shortening the development cycle of the 

algorithm. 
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