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Abstract. ARMA modeling and filtering methods for HRG random error are studied. Firstly, the 

model is constructed by analyzing the autocorrelation and partial correlation of HRG stationary 

random signals, the applicable model is build, and then the model order is estimated. Then, the 

residual parameters are obtained by calculating the residual method by long autoregressive model. 

Under the condition of colored noise, the ARMA model cannot be whitened by the traditional state 

expansion method. According to the equivalence between the orthogonal projection theorem and the 

linear minimum variance estimation, the adaptive kalman filter formula with the control term is 

deduced. The new method can directly reflect the influence of colored noise on the system, which 

can effectively eliminate the error and get the accurate estimation of the state value. The experimental 

results show that the improved method is more effective than the classical kalman filtering method in 

filtering out the noise. 

1. Introduction 

As an important inertial sensitive device, Gyroscope’s accuracy affects the navigation system 

navigation performance at a large extent. In general, the gyroscope error mainly includes 

deterministic and random errors, the former can be compensated through the calibration method; the 

latter needs to be modeled filter compensation[1]. 

At present, the more commonly used gyroscope random error modeling methods are: time series 

analysis[2-4], Neural network[5], Non-linear modeling[6] etc.Among them, because the noise in 

ARMA model is colored noise, it can not be whitened by traditional state expansion method, and can 

not directly use kalman filter, which makes the research based on ARMA model and kalman filter 

method still need further study. In response to this problem, many scholars have also put forward 

some solutions.In [7], the Kalman filter method with colored noise is deduced by using the linear 

variation, considering the correlation property of the adjacent epochs of colored noise;In [8], singular 

value decomposition and measurement transform method are used to propose matrix-weighted fusion 

kalman filtering method; In [9], the random noise based on ARMA model is modeled and 

filtered.Through the analysis of HRG stationary random data, it is considered that ARMA modeling 

is more suitable. When combined with Kalman filter technology, the problem of colored noise 

whitening should be considered. In this paper, the adaptive Kalman filter equation of colored noise is 

deduced by orthogonal projection correlation property analysis. The research of adaptive kalman 

filtering method based on ARMA model is carried out. 

2. Data Preprocessing and Correlation Test 

In the time series modeling process, the data should satisfy the condition of smooth, normal and 

zero mean. Therefore, after obtaining the random error of the gyroscope, the data must be checked to 

meet the modeling requirements[10]. After a first-order difference, a domestic HRG gets a smooth 

random data through static experiments, as shown in Figure 1.  
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Figure 1. 1-Order differential stationary random data of HRG gyro 

Through the analysis of auto-correlation and partial correlation of stationary random data, as 

shown in Fig. 2 and Fig.3. it is shown that the auto-correlation and partial correlation properties are 

trailing characteristics, and the data is more suitable ARMA model according to the time modeling 

theory[11-12]. 

 
Figure 2. Partial correlation of stationary random data  

 
Figure 3. Autocorrelation of stationary random data 

The ARMA model can be defined as[12]: 

 
1 1

( ) ( ) ( )
n m
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x t a x k i k b n k j
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                                                                                                      (1) 

Where n is the order of the AR model, m is the order of the MA model,  x t x is the time series signal,

( )k is the white noise sequence, ia is the autoregressive coefficient and ib is the sliding coefficient. 

In the ARMA model, the computational complexity of the determinant method is large, and the F-

test method leads to the uncertainty of the model due to the significant level. In order to ensure the 

accuracy of the model, the AIC (Akaike Information Criterion) criterion and the Bayesian 

Information Criterion (BIC) criterion are used to determine the model order[13]. The order of the 

ARMA model is 3, 1n m  , Since the residual ˆ( )k of the ARMA model is unknown and the model 
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parameters can not be estimated linearly, the residual equation is calculated by using the long 

autoregressive model to estimate the model parameters of HRG random error. In order to estimate 

the model parameters ,i ja b by using the least squares method, a higher order model AR(6) is used to 

approximate ARMA (3,1). The residual estimate sequence at this time is the estimate of the residuals
ˆ( )k of the ARMA model. Firstly, the AR(6) model is established : 

( ) 1.502 ( 1) 1.609 ( 2) 1.423 ( 3) 1.071 ( 4)

0.6474 ( 5) 0.269 ( 6) ( )

x k x k x k x k x k

x k x k k

        

    
                                                                (2) 

The estimated value ˆ( )k of the driving white noise can be derived from the above equation: 
ˆ( ) ( ) 1.502 ( 1) 1.609 ( 2) 1.423 ( 3) 1.071 ( 4)

0.6474 ( 5) 0.269 ( 6)

k x k x k x k x k x k

x k x k

         

   
                                                       (3) 

The ARMA(3,1) model can be obtained by using the recursive least squares method: 
( ) 0.5671 ( 1) 0.2613 ( 2) 0.0697 ( 3)

0.9963 ( 1)+ ( )

x k x k x k x k

k k 

      

 
                                                                                 (4) 

3. Kalman Filtering based on ARMA Model 

For stationary random data containing colored noise, the kalman filter equation can not be used 

directly for compensation processing, otherwise there will be the situation of reduced filter accuracy 

or even distortion.Therefore, it is necessary to whiten the colored noise, Based on the relevant 

knowledge of the optimal state estimation, the state prediction value , 1
ˆ

k kX  and the observed prediction 

value , 1k kZ  are respectively are the linear minimum variance estimates of kX and kZ obtained by the 

observation amount 1kZ  at the previous n-1 time. According to the equivalence between the 

orthogonal projection theory and the minimum variance estimation, the kalman filter equation can be 

deduced under the colored noise using the orthogonal projection correlation property. 

According to the previously determined ARMA (3,1) model parameters, the system state equation 

and the measurement equation can be constructed: 

, 1 1k k k k k

k k k k

X X W

Z H X V

   


 
                                                                                                                      (5) 

In the formula, 
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, 1k k is a one-step transfer matrix, ( )Z k is the measured value,  1 0 0kH  . 

1( ) ( 1)kW k b k    , among them, ( )k is the Gaussian white noise sequence, which is: 
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( )V k is the system white noise: 

[ ] 0

[ ]

[ ] 0,

k

T

k k k

T

k j

E V

E V V R

E V V j k





 

                                                                                                                             (8) 

Let , , , ,k i i j k j k i j     , From (5), it can be obtained: 
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Innovation vector is:  

, 1 , 1
ˆ

k k k k ke Z HX                                                                                                                            (11) 

The Innovation covariance matrix is: 

, 1( )T T

k k k k k k kE e e H P H R                                                                                                                (12) 

In the kalman filter equation, the state prediction , 1
ˆ

k kX  of step k is the minimum variance estimate 

of the kX under the condition of the previous step 1k  measure 1kZ  , that is the orthogonal projection of

kX in 1kZ  , Referred to as: 
1

, 1
ˆ Pr( / )k

k k kX X Z 

                                                                                                                        (13) 

Substituting equation (5) into (13): 

1
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Then, 
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From (14)-(18), state prediction can be obtained: 

, 1 , 1 1, 1 1 , 1 1, 2
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Then one step prediction error: 
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One step prediction covariance matrixcan can be getted: 
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                                                             (21) 

Among them, 1,2 1, 1 1 1[ ] ( )T T

k k k k k kP E X W I K A N       2,3 1, 2 1[ ] T

k k k k kP E W e N A    . 

From equation (21), we can get the state prediction value of colored noises and one more control 

item.This is made up of the previous message vector and gain matrix,The covariance matrix also 

contains information about the colored noise, which visually shows the influence of the colored noise 

in the kalman filtering process and is controlled. The improved filtering equation is as follows: 
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State step prediction: as shown in equation (19),  

State Estimation: 

, 1 , 1
ˆ ˆ

k k k k k kX X K e                                                                                                                        (22) 

Filter gain matrix: 
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In the kK equation, the variable weighting coefficient
1

1

k






is introduced, and on the one hand, , 1k kP 

can be adjusted to enhance the effect of the new measurement. On the other hand, the noise covariance 

matrix is adjusted to ensure the stability of the covariance matrix Sex, and then improve the filtering 

accuracy. 

Estimated Filtering Variance Matrix:  

, 1( ) ( )T T

k k k k k k k k k kP I K A P I K A K R K                                                                                             (24) 

System noise variance matrix: 
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The initial value is: 
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( )k is the residual sequence fitted by the ARMA model. Measurement noise variance matrix: 

2

1

1
[ ( )]

N

k

R rz k
N 

                                                                                                                                  

(27) 

Where r is the percentage of the data assumed to be the model error, Set to 0.1. According to 

equations (19),(22) to (27), kalman filtering under colored noise conditions can be performed.So as 

to obtain the optimal estimate of HRG stationary random data. 

4. Data Validation and Effect Analysis 

According to the HRG stationary random signal of Fig.1, the ARMA model of equation (4) is 

established, and then the state and measurement equations are established, and then the classical 

kalman filter and the new kalman filter method are used to compensate. As shown in Fig 4 and Fig 5. 

 
Figure 4. Classic kalman filter results         Figure 5. Improved kalman filter results 

It can be clearly seen from Fig. 4 and Fig. 5 that after the classical kalman filtering, the fluctuation 

range of the data is slightly reduced, and after the new method, the fluctuation of the data changes 

obviously. In order to more clearly quantitative analysis smooth random signal, the classic kalman 

filtered signal, the improved method of this paper after the statistical characteristics of the statistical 

comparison shown in Table 1. 

0 1000 2000 3000 4000 5000 6000
-10

-8

-6

-4

-2

0

2

4

6

8

10

R
a
n
d
o
m

 e
rr

o
r/

o
/h

n

 

 

initial data

classic kalman

0 1000 2000 3000 4000 5000 6000
-10

-8

-6

-4

-2

0

2

4

6

8

10

R
a
n
d
o
m

 e
rr

o
r/

o
/h

n

 

 

initial data

improved kalman

Advances in Computer Science Research, volume 70

449



 

Table1. The statistical feature analysis of random error  

 
Smooth Random 

Signal 

The Classic Kalman 

Filter 
The Improved Method 

Mean  °/ h
 1.710e-04 3.725 e-04 4.805e-05 

Variance
  2
°/ h

 
5.812 2.017 8.531e-03 

From the data in the table, it can be seen that the classical filtering algorithm has little improvement 

in the filtering effect due to the absence of colored noise, and the variance is slightly reduced;however, 

the improved kalman filter has obvious improvement in the characteristics of the filtered data. The 

random signal is reduced by three orders of magnitude, indicating that the discrete characteristics 

have been improved obviously, and the improved filtering algorithm is also verified indirectly. 

In order to further illustrate the effectiveness of the improved filtering algorithm, the classical 

kalman stationary random signal and the improved filtered signal are analyzed by Allan variance, as 

shown in Fig.6, Fig.7 and Table 2. 

  
Figure 6 classical kalman filtered data                 Figure 7. Improved kalmanfiltered data 

Table 2. The identification result contrast of HRG random error 

The main error 

coefficients 

Smooth 

Random Signal 

The Classic 

Kalman Filter 

The Improved 

Method 
Rate of change 

Quantization Noise 

Coefficient /( )urad  
117.01 53.194 4.2969 -96.33% 

Angle Random Walk 

Coefficient   1/2/ / h  
1.8678 0.57917 0.06427 -96.59% 

Rate Slope 

Coefficient   2/ / h  
1.2544e+04 3.9291+04 8.9988e+03 -28.26% 

Rate Travel 

Coefficient

  3/2/ / h  

13906 4365 1079.5 -92.24% 

Zero Partial 

Instability 

Coefficient   / / h  

328.44 104.54 25.669 -92.18% 

The table "-" represents the reduction of the modified algorithm compared to the original stochastic 

steady data. 

From the data analysis in the table, we can see that after the classical kalman filtering, most of the 

error term coefficients are obviously reduced, but the value of the slope coefficient increases, which 

means that the effect of kalman filter appears when considering colored noise divergent phenomenon. 

After improved kalman filtering, the data of the five error terms are significantly reduced. This shows 

that the error characteristics of HRG stationary random data are improved well, and the superiority 

of improved filtering method is also verified. 
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5. Conclusion 

This paper mainly studies the HRG stochastic error modeling and filtering method based on 

ARMA model, which has certain application value to reduce the random error of gyroscope. The 

main results are as follows: (1) The idea and main method of ARMA model modeling are given; (2) 

Using the orthogonal projection principle, a new method of whitening the colored noise is deduced, 

and the influence of colored noise on the system is displayed intuitively; (3) The kalman filter 

equation under colored noise is established, and the filtering effect of the improved algorithm and the 

classical algorithm is compared. The modeling accuracy and good filtering effect of the gyroscope 

smooth random data are obtained. 
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