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Abstract. Conventional Volterra series model is hardly applied to engineering practice due to its 

parametric complexity and estimation difficulty. To solve this problem, nonlinear system identification 

using reduced complexity Volterra models is proposed. Since the nonlinear components often play a 

secondary role compared to the dominant, linear component of the system, they spend the most of 

identification cost. So it is worth establishing a balance between identification cost and model accuracy 

by reducing the complexity of nonlinear components. Refer to the idea of nonlinear output frequency 

response function, conventional Volterra model is simplified. And then a minimum mean square error 

criterion based method to identify the simplified model is proposed. The distinguishing feature of this 

method is high accuracy, good robustness, and significant reduction in the computational requirements 

compare to the identification of conventional Volterra models. The simulation show that the proposed 

method is effective, and the reduced complexity Volterra model is of good generalization ability in 

general. So this nonlinear system identification approach is quite applicable to engineering practice. 

1. Introduction 

The Volterra series model provides an intuitive and relatively general framework for analyzing the 

behavior of non-linear systems [1]. Most real world systems are nonlinear in nature so thatnonlinear 

models are often preferable for representing systems under study. This is evidenced by the wild spread 

applications of Volterra models in fields including control [2], identification [3], damage detection [4] 

and assessment [5]. 

The objective of present study is to develop an efficient and practical approach for identification of 

quadratic nonlinear systems. A simplified nonparametric model identification method is presented. 

This method leads to significant reductions in both the computational requirements and the 

mathematical tractability comparing to traditional Volterra model. Simulations show present algorithm 

has excellent ability of model generalization and is still effective with output measurement noises, even 

in low signal-noise-ratio (SNR) condition. 

2. Preliminaries 

For a weakly nonlinear system up to second order Volterra series representation, the discrete time 

Volterra model can be expressed as  
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where
1( , , )n nh    denote the nth-order Volterra kernel function. In the frequency domain, Eq.1 

transforms to  

         1 2( ) ,
k

Y f H f U f H f g g U f g U g           (2) 

where Y( f ) , U( f ) denote the Fourier transforms of the output and input response, respectively. 

 1, ,n nH f f  is the n-dimensional Fourier transform of 
1( , , )n nh    , which called the nth order GFRF: 
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The Eq.3 can be written more compactly with the linear and quadratic operators L(.) and Q(.) : 

Y = L(U) +Q(U) +ε          (4) 

whereεdenotes the model error in frequency domain. For practical reason, we consider input signals 

having negligible power at the frequencies larger than some upper bound frequency fM . 

Correspondingly the frequency ranges of each order outputs are f ∈[0, f M] for linear part and  f , g ∈

[− fM, fM] or quadratic part. Therefore the valid frequency range of quadratic kernels is [0, 2 fM] with 

the assumption of the GFRFs are symmetric without loss of generality. 

3. A Simplified Identification Method 

Consider the input and output signals are sampled synchronously with the sampling frequency fs . 

When the expected discrete frequency resolution 0 f and the maximum input frequency fM = Mf0 are 

given, the least data length N should be taken as 4M to avoid aliasing. Then the quadratic Volterra 

model in the discrete frequency domain may be written as 
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for k,m∈(−N /2, N/ 2]. Since the higher order kernels often play a secondary role compared to the 

dominant, linear component of the system, it is reasonable to assume that all  1, ,n nH f f  in the hyper 

plane f1 + ...+ fn = f are the same value. Under this assumption, a conception of equivalent kernel is 

defined as 
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Therefore, the Eq.5 may be simplified to 
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The unknown kernels in Eq.7 can be calculated approximately from the LSM 

(Least-SquareMinimization) of the power of model error. Define the least square cost function 
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Where E{.} denotes the expectation operator. To minimize Eq.8 requires 
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Substituting Eq.8 into Eq.9, we obtain 
TZ Φ H              (10) 
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for k∈[0, 2M],  g∈[(k +1)/2, M] when k is odd and g∈[k/2,M] when k is even. In Eq.10-Eq.13, 

SUU , SUY , SUUU and SUUY are the auto spectrum, cross spectrum, auto bi-spectrum and cross 

bi-spectrum, respectively, and [.]T denotes the transpose operator. Eq.10 is derived by assuming the 

fourth order cumulant function of input signal vanishes. 

The Least-Square solution of Eq.10 is (ΦΦT)−1 ΦZ . By using the equivalent kernel, the size 

ofΦΦT is reduced from (M−k /2 +1)×(M − k /2 +1) to 2×2 , which implies the significant reduction of 

computational requirements and store spaces in solving Eq.10. 
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4. Identification Algorithm Using Random Multi-tone Excitation 

For given discrete frequency resolution f0 and the maximum input frequency Mf0 , a random 

multi-tone excitation signal could be designed as follow 
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where {A m}is the constant amplitudes, and {φm}is the random phases which are independent, 

uniformly distributed random variables on [0, 2π ). It is proved that the fourth order cumulants of such 

random multi-tone signals fall faster to zero than the third order cumulants [6]. Thus we canassume 

that the inputs have a vanishing tri-spectrum, and therefore Eq.10 is valid. 

The steps of the identification algorithm can be described as follow: 

Step 1: Choose the frequency resolution f0and the maximum input frequency Mf0 . Generate M 

random numbers independently for {φm} . Then construct the input signal by Eq.14. 

Step 2: Determine the sampling frequency f s and the record length N follow the principle f s=N f0 ≥Mf0 . 

Step 3: Apply the excitation to the real process, and sample the input and output signals 

synchronously. 

Step 4: Estimate the spectrums in Eq.11-Eq.13, and then obtain the estimates of H1 and 
2

equH  

according to the Eq.10 solution. 

Step 5: Test the generalization ability for the obtained model. If the result reaches required precision, 

end the algorithm, if not, turn back to step 1. 

5. Simulations 

In this section, simulations are provide using the system y=−15y−0.1y2 + u + 0.1u2 . Input signal for 

testing the generalization ability of model is selected as u(t) = 2sin(20.25t) + 2sin(15.34t) , which is not 

used in identification. 

In order to demonstrate the effects of the identification algorithm presented in this study, two groups 

of numerical simulation are conducted. One compares the identification performances using random 

inputs with using random multi-tone inputs. Another examines the effects of additive noise in output 

measurement. In latter simulations, performances between the represented method and the previous 

method in [7] are compared. The results are given in Fig. 1-Fig. 3. 

In Fig. 1, we compare the performances of identified model using random and random multi-tone 

inputs. As can be seen in this figure, it is difficult to obtain accurate estimation using random inputs. 

For it is impossible to generate random inputs with perfect cut-off in its power spectrum, the accuracy 

of the estimation using random input is certainly affected. On the other hand, using random multi-tone 

inputs recover an excellent performance. 

Fig. 2 and Fig. 3 compare the previous method and present method with additive noise in output 

measurement. It can be seen that the present method has a better ability of against the noise in output, 

which profit from the use of higher order spectrum. However, additive noise still result in inaccuracies 

in model identification, and by using more realizations, the error in kernel estimation may be 

decreased. 

 
Figure 1.  Output of identified model using random (left) and random multi-tone (right) inputs 
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Figure 2.  Output of identified model using previous (left) and present (right) methods (SNR: 20dB) 

 
Figure 3.  Output of identified model using previous (left) and present (right) methods (SNR: 10dB) 

6. Summary 

In this study, a simplified nonparametric identification algorithm for quadratic Volterra systems is 

proposed. By using multi-tone inputs and the higher order spectrum of input-output data, the 

generalization ability and the robustness of obtained model can be guaranteed. Moreover, compared to 

the previous methods, the present algorithm requires fewer calculations and store spaces. 
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