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Abstract. The emergence of compressed sensing technology brought a revolutionary opportunity to 

wideband spectrum sensing, which could be used to reduce the sampling rate and reconstruct the 

sparse spectrum. In combination of measurement matrix optimization and adaptive process of 

compressive sampling, a modified adaptive compressed wideband spectrum sensing algorithm is 

proposed. In this paper, the column vector autocorrelation of the observation matrix was reduced, and 

the impact of optimized matrix on reconstruction algorithm was analyzed. The simulation results show 

that the proposed algorithm has a lower mean square error (MSE) than that of the traditional algorithm, 

and the detection probability is higher at the same number of observations. 

1. Introduction 

Cognitive radio technology (CR) is an effective means to solve the problem of spectrum shortage 

[1], spectrum sensing is one of the key technologies of cognitive radio. The traditional spectrum 

sensing method divided the wideband spectrum into several sub-bands. By using the tunable filter, 

spectrum sensing can detect the sub-band in time division. However, it is inflexible and unable to 

detect in real time. There is also a high speed analog to digital converter (ADC) for wideband signal 

detection, but when it is faced to the bandwidth ranged up to thousands of MHz, it would bring the 

problems of large data acquisition and difficult hardware implementation. 

Compressed sensing technology (CS) provides a new way to solving the problem of real-time 

wideband signal detection. Compressed sensing technology was first proposed by Candes [2], 

Romberg, Tao [3] and Donoho [4] et al., which can be used to compress and sample sparse signals 

synchronously, and to reconstruct the signal by non-adaptive linear projection. The method of 

Sequential Compressed Sensing (SCS) is proposed by GU [5]. Under the premise of ensuring high 

probability reconstruction of the original signal, this method discusses the minimum number of 

observations. The basic idea of SCS is to increase the number of observations sequentially and 

reconstruct the signal in time to obtain a set of reconstructed signals. When the reconstructed signals of 

two or more adjacent groups are identical, the observation is considered as the suitable value. By 

improving the traditional OMP algorithm, Sparsity Adaptive Matching Pursuit (SAMP) algorithm is 

proposed by DO [6], which can track and update the number of selected atoms dynamically in the 

process of iteration. Moreover, the algorithm introduces an atomic backtracking mechanism to ensure 

the reliability of the signal reconstruction results. The variable step size adaptive matching pursuit 

algorithm, sparsity adaptive subspace pursuit algorithm and regularized adaptive matching pursuit 

algorithm are proposed in [7], [8] and [9]. 

Adaptive algorithm is proposed to find the best reconfiguration algorithm when the sparse degree is 

unknown. However, all of the above studies are limited to adjusting the dimension of the projection 

matrix in time by the tracking method. They did not take the minimization of the column vector 

correlation of the projection matrices with the increased dimension into consideration. Combining the 

observation matrix optimization and adaptive process, the spectrum sensing algorithm of optimized 

adaptive compression based on observation matrix is proposed in this paper.  
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2. Compressed Sensing 

Assuming that the total bandwidth to be detected by the cognitive user is B Hz, it can be divided into 

L non-overlapping sub-bands evenly, and the edge position frequency of each sub-band is
0 1, , Lf f 

. 

As the prime user can occupy the sub-band arbitrarily, the PSD is approximately to zero when the 

sub-band is not occupied, and the PSD in the wideband is sparse.  

Supposing that the signal to be measured is  x t , the discrete value of  x t is  x n , the 

autocorrelation function of  x n is      *r n E x m x m n    ,  r f corresponding to the Fourier 

transform value of  r n , which represents the power spectral density, the corresponding relationship 

is: 

   1r n F r f                                                                                                                                 (1) 

In (1), 
-1F represents an inverse Fourier transform. In the process of CS,  yr n is obtained by the 

projection of autocorrelation function on a random Gaussian matrix  , and the process can be 

expressed as: 

y xr r GZ Z                                                                                                                    (2) 

In (2), = G  is defined as a compressed sensing matrix. As shown in (2), as long as the sparse 

vector Z is reconstructed from the measured value
yr , the spectrum information of the signal could be 

obtained. Among them, the sparse vector Z can be obtained by solving the problem of 1l norm 

optimization in (3) 

1

ˆ arg min
l

Z z                                                                                                                               (3) 

The greedy algorithm and convex optimization algorithm are used to solve this problem. Among 

them, the match pursuit algorithm convergence faster, and the experiment in this paper would use this 

algorithm. 

3. Observation Matrix Optimization 

RIP conditions fully guarantee the signal recovery performance of the sensing system, which plays 

an extremely important role in the CS field. For any K-sparse signal X , if there is a 

constant  01K  ，which could support the equation (4): 

   
2 2 2

2 2 2
1- 1K KX X X                                                                                                        (4) 

That the matrix satisfies the K-order RIP condition. RIP makes any column of almost orthogonal, 

and ensures the non-correlation betweenwith G. However, the verification of RIP conditions is very 

difficult. In [10], Michel gave a more concise expression:  

 0

1 1
1

2
X



 
    

                                                                                                                         (5) 

In (5),    denotes the degree of correlation of , which is defined as the normalized inner 

product with the largest absolute value between all columns of the perceptual matrix Ψ, that: 

 
1 ,

2 2

= max

H

i j

i j N
i ji j

 


  


 
 
 
 

                                                                                                               (6) 

It can be seen from that the correlation coefficient has a significant effect on the recovery accuracy 

of the signal,    could be sufficiently small if is chosen properly, then RIP will ensure that the 

signal is recovered with high probability. Therefore, it is important to reduce the correlation between 

the columns of to enhance the performance of the reconstruction algorithm. 

Define a complex Gram matrix
HG   , which represents the correlation degree of matrix .  
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                                                                                                               (7) 

In G, H

ij i jg   represents the cross-correlation coefficient between any two columns in the . 

The most ideal case of the matrix G is to become a diagonal matrix. Therefore, the ultimate goal of 

matrix optimization is to set the appropriate sensing matrix Ψ such that the Gramm matrix G has the 

closest form to the diagonal matrix.  

4. Adaptive Compressed Wideband Spectrum Sensing 

Adaptive compressed sensing refers to adaptively adjust the size of the observation matrix when the 

signal sparsity is unknown, and the key technique is to determine the termination threshold. In order to 

select the optimal number of observations, a sequential compressed algorithm is used to estimate the 

reconstruction error of the sparse vector̂ . Firstly, it is assumed that the initial number of observations 

is
0M according to the empirical values of the different signals. This value represents the number of row 

vectors of the initial projection matrix. Suppose that the number of observations increased by the step 

of T, and by receiving the additional T observations, the reconstructed vector 0ˆM is obtained. Adaptive 

compressed sensing dynamically adjusts the number of observations. Since there is a certain degree of 

redundancy between the column vectors of the projection matrix, the projection matrix cannot be 

determined by the adaptive process alone. Only the adaptive process of compressed sensing is 

combined with the optimization process of projection matrix, would the optimal projection matrix be 

determined to achieve the best spectrum detection effect.    

In summary, this paper proposes a sparsity adaptive matching pursuit-optimized algorithm for 

wideband detection. The algorithm is described as follows: 

Input: Wideband spectrum signal 

Output: Sub-band occupation information 

Step 1: Generate
0 , which is a

0M N dimensional random matrix. Combining the Fourier basis F 

with the wavelet basis W, the compressed sensing matrix 1 1

0 0= F W    is obtained; 

Step 2: Calculate the Gram matrix of 0 :
0 0

TG   . 0  Is a matrix which column vectors are 

normalized of 0 ; 

Step 3: Set the iteration number Q and threshold .  
,

, ,

,

ˆ .

i j

i j i j

i j

g

g t sign g

g








 



  

,

,

,

i j

i j

i j

g t

t g t

t g







 



 Is used for 

the singular value decomposition (SVD) of the elements ,i jg of matrix G. To obtainĜ , the elements 

from k +1 to N of the diagonal matrix are set to zero and repeated until the iterative process is 

completed; 

Step 4: Let matrix Ĝ subject to SVD decomposition, and construct matrix 0 0

TD S U , which is the 

optimized compressed sensing matrix. Among them, 0S is the first k SVD values of S, and 0U is the 

first k columns of U; 

Step 5: If  0

0

ˆ ,
M

T M TC d Z H    jump to step 7; if not, jump to step 6; 

Step 6: increase the observation to obtain the new observation matrix
1 and the compressed sensing 

matrix 1 , and 1  is optimized according to the step 3; 
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Step 7: The sparse vector Z is reconstructed, and the power spectrum is obtained by transforming to 

the frequency domain, and the occupancy of the sub-band is analyzed according to the value of the 

power spectrum. 

5. Simulations 

In this paper, MATLAB platform is used to simulate and verify the wideband spectrum detection. 

During the detection process,  x t is used as the source signal, which is superimposed by a plurality of 

center frequency signals. 

       
5

1

sin cosi i i i

i

x t E B c B t f t 


                                                                                      (8) 

The bandwidth of each sub-band is B  8MHz, 
iE refers to the random amplitude value, 

i refers to 

a random time offset, and
if refers to the center frequency of the band randomly occupied. A total of 16 

sub-bands, of which 5 sub-bands are randomly occupied, the signal amplitude of these bands are 

subjected to normal distribution, the remaining sub-bands are blank. Supposed that the dimension of 

the signal to be measured is N  128, which is the number of the Nyquist sampling during the 

observation period. The error threshold of reconstruction algorithm is -2=10 , and repeat the operation 

1000 times to obtain the average value.  

In order to represent the error between original data and reconstructed spectrum data, Mean-square 

Errors (MSE) is defined:  

 
 

2

, ,

2

,

î j i j

i j

E r r
MSE

E r







                                                                                                                          (9) 

The OMP algorithm and the SAMP algorithm are used in this experiment. According to the power 

spectrum obtained in step 7 of the SAMP-OP algorithm, the energy of each sub-band can be obtained. 

By comparing the energy value with the preset threshold value, the spectrum occupancy can be judged. 

Set M=64, and SNR ranged from 0~20dB. The MSE of each algorithm at different SNR is shown 

in Fig. 1. The range of the number of observation is 30~120, and the SNR is 10d B, and the average 

value is obtained by repeating 1000 times for each observation, as shown in Fig. 2. As can be seen from 

Fig. 1 each curve decreases with the increase of SNR. The reconstruction performance of SAMP is 

better than that of OMP, and the performance is improved after the optimization of projection matrix. 

In Fig. 1, the MSE decreases as the number of observations increase. When there are more 

observations, SAMP has obvious advantages over the OMP algorithm. In general, the MSE of the 

optimized projection matrix in Fig. 1 and Fig. 2 are lower than that in the case of no optimization, 

which show that the optimized projection matrix is with higher precision.  

 
Fig. 1 MSE of different SNR 
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Fig. 2 MSE of different observation times 

In order to verify the improvement of spectrum sensing, the relationship between detection 

probability and observation times was analyzed, as shown in Fig. 3. Set SNR=10dB, and spectrum 

holes are determined by energy detection. The occupation of the spectrum holes can be determined by 

the comparison of the energy value with the preset threshold.  

 
Fig. 3 Pd of different observation times 

It can be seen from the Fig. 3 that Pd is increased in pace with the raise of observation. For the same 

reconstruction algorithm, the detection probability of the projection matrix is higher than that of the 

matrix without optimization. 

6. Conclusion 

In the cognitive radio system, the SU cannot predict the spectrum occupancy of the PU, which the 

spectrum sparsity is unpredictable. The adaptive compressed sensing technology can solve this 

problem effectively. In this paper, a sparsity adaptive matching pursuit optimized algorithm in 

wideband detection is proposed, which reduce the autocorrelation between the projection matrix 

vectors. The adaptive adjustment of the observation is realized by estimating the reconstruction error of 

the sparse vector. At the end of this paper, the SAMP-OP algorithm is compared with the traditional 

algorithms. The simulation results show that the proposed algorithm has a lower MSE than that of the 

traditional algorithm, and the detection probability is higher at the same number of observations. In this 

paper, the technique is applied to the wideband spectrum detection in cognitive radio, and the 

corresponding solution and reconstruction algorithm are put forward. 
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