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Abstract. In the design process of perforated thin plates, the buckling analysis for guaranteeing larger 

buckling bearing capacity and determining reasonable hole forms is essential. The nonlinear buckling 

behavior of the perforated plate under in-plane load is studied in this paper by using the Riks Method 

and the effects of geometrical parameters such as imperfection shape, hole size and hole location on 

buckling bearing capacity are considered. The results show that the increscent hole size or hole rotation 

angle always cause linear decrease of the buckling load. The buckling bearing capacity is inversely 

proportional to the spacing between hole center and plate center. 

1. Introduction 

Plates are often used as the main components in engineering practice, openings in such plates may 

be required. However, the presence of openings leads to change in stress distribution within the 

variations in buckling characteristics of plates. Many factors affect buckling bearing capacity of plates. 

Scholars lay emphasis on solving the buckling problem of perforated plates by Finite Element Method 

(FEM). Rocha et al. [1] studied the buckling behavior of rectangle plate with elliptic, square or 

diamond hole, optimized the structure according to the minimum principle of imperfection distribution 

and attained the reasonable scope of opening form. Liu et al. [2] calculated the linear buckling load of 

perforated plate under axis compression load and analyzed the effect law of hole size and hole location 

on elastic buckling load of plate. Cheng et al. investigated influences of non-dimensional parameters 

on compression behaviors of rectangular plates [3]. Prajapat et al. [4] studied the effect of the size, 

shape and eccentricity of holes on buckling loads of plates. Komur et al. investigated the buckling of 

perforated square and rectangular plates subjected to in-plane compressive edge loading. The plate 

aspect ratio, the length and location of edge loading and the diameter of circular hole were taken as the 

variables that have effect on the behavior of plates [5].  

In this paper, nonlinear buckling analysis of square perforated plates is investigated by the Riks 

method, the effects of hole shape, hole size, hole angle and hole location are received and the effect 

laws are concluded. 

2. The Approximate Analytical Solution  

2.1 The Principle of Minimum Potential Energy. 

The critical buckling load of the perforated square plate under in-plane load is calculated by using 

the principle of minimum potential energy. In the process of the plate from plane state into buckling 

state, the total potential energy П of plate is  
П U V                                                                                                                                        (1) 

where U is strain energy in buckling process and V is the work of in-plane loads. П is the function 

related to the independent undetermined coefficient Cmn (m=1,2,3...i; n=1,2,3…j).  

According to the principle of minimum potential energy, it can be defined as 
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When 2 2/ 0mnП C   , П is minimum. The necessary and sufficient condition of the elastic plate in 

the stable equilibrium state is that the total potential energy takes the minimum value and the 

corresponding load is the critical buckling load.  

2.2 Buckling Load of the Plate with a Square Hole. 

For the plate with a square hole in the center, L and t are the length and thickness of plate, 

respectively. The translational degrees of freedom perpendicular to plane are constrained in Fig. 1. 

 

Fig. 1 The load and boundary condition of the square plate 
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Fig. 2 Relational curves between hole size and nonlinear buckling load 

The deflection equation is  

1 1

sin sin
2 2

mn

m n

n x m y
w C

L L

  

 

                                                                                                         (3) 

The boundary conditions of the model must satisfy Eq.(3). For the perforated plate, the total 

potential energy can be written as 
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where D denotes the bending stiffness of the plate,
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; E denotes elastic modulus;   

denotes passion ratio; 0 2 1A A A  , 2A  is the area of the square plate and 1A  is the area of the hole. 

Substituting Eq.(3) into Eq.(4), the total potential energy of the plate can be obtained. According to 

Eq.(2), when m and n are equal to 2 respectively, the critical buckling load of the plate can be written 

as 
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where
0crP denotes the critical buckling load of the perfect plate, 2 2

0 4 /crP D L ; /a L  , a is 

the side length of the square hole. 

3. Comparison of the Solutions of Buckling Load 

3.1 Numerical Calculation Model. 

The each edge length of square plates is 100 mm and the thickness is 1 mm in the following analysis. 

The elastic modulus of isotropic elastic-plastic ideal plates is 200GPa and passion ratio is 0.3. The 

plastic properties of material are presented in Table 1. The translational degrees of freedom along 

z-direction of four sides, y-direction of bottom side of the plate and x-direction of the center node of 

top and bottom side are constrained respectively. The uniformly distributed load is applied to the top 

side in Fig. 1. 

Table 1 The plastic properties of the material 

Stress/MPa 158.7 163.1 186.3 193.2 202.2 207 

Plastic Strain 0 0.015 0.033 0.044 0.062 0.15 

3.2 Comparison of Analytical and Numerical Solutions of Buckling Load. 

The defect factor δA is 

δA=A1/A2                                                                                                                                        (6) 

where A1, A2 represent perforation area and plate area respectively. The position of the perforation 

center coincides with the center of the plate. The eigenvalue buckling load of plate with a square hole 

is calculated by using ABAQUS software. The numerical solution of elastic buckling load Pcr is 

compared with theoretical solution Ncr calculated by Eq. (5), which is shown in Table 2. 

Table 2 Comparison of theoretic results and numerical results of plate with different defect factors 

δA102 0 0.785 3.141 7.068 12.566 19.634 28.274 

Ncr/kN 7.2304 7.0076 6.3874 6.1363 5.5367 4.9892 4.5624 

Pcr/kN 7.1845 6.9523 6.4368 6.0894 5.6365 5.4674 5.4308 

Error (%) 0.63 0.78 0.77 0.76 1.80 9.57 19.03 

For the perforated plate, the buckling load is inversely proportional to the hole size. When the defect 

factor δA102<12.566, the goodness of fit between the numerical solution and theoretical solution 

illustrates the rationality and high accuracy of FEM.  

4. The Effects of Hole Shape and Size on Buckling Capacity 

In this section, the effects of hole shape, hole size, hole angle and location on the buckling load of 

thin plates under in-plane load are investigated, which consider imperfection, geometrical nonlinear 

and material nonlinear.  

4.1 The Analysis of Buckling Bearing Capacity. 

The effect laws of hole shape and size on the nonlinear buckling load of thin plates is concluded. 

The relational curves between defect factor and buckling load are obtained in Fig. 2.  

For the plates with three hole shapes, failure mode is mainly inward bulge. The displacement 

around hole edge is greater than that of other area. The displacement around hole edge near the loaded 

side is greatest, which is prone to buckling. The distribution of stresses at the edge of a circle hole is 

more gentle than the other holes edge. The existence of the sharp angle for the plates with a square hole 

or triangular hole results in obvious stress concentration, the plates are extremely unstable and prone to 

buckling. 

4.2 The Effects of Hole Angle on Buckling Bearing Capacity. 

For the plates with a square hole or triangular hole located in the center of plates, the difference of 

the hole angle will affect buckling behavior. 

(1) The effect of square hole angle on buckling of plates 
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Fig. 3 Rotation angle α of square hole 
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Fig. 4 Relation curves between hole angle and buckling load 

When the square hole area is lesser, the effect of hole angle on buckling bearing capacity of plates is 

not obvious. However, for the bigger hole, it is quite clear. Buckling analysis of the square hole plates 

with different rotational angles α are investigated in Fig. 3. The relational curves between buckling 

load and hole angle for different hole sizes are shown in Fig. 4. For the square hole with same area, 

when α is lesser (α<15o), the change of buckling load with hole angle is not obvious; when α is bigger 

(15o<α<45o), the buckling load presents a trend of linear decrease with the increase of hole angle. When 

δA102=28.274 and the hole rotates counter clockwise from 0o to 45o, the buckling load drops 

22.57%.  

Buckling bearing capacity is closely related to the cross section stiffness. When the hole rotates, the 

minimum section size declines obviously and the total section stiffness is impaired. For the plate under 

less external load, the minimum section closed to external load is prone to buckling. 

(2) The effect of equilateral triangle hole angle on buckling of plates  

 
Fig. 5 Rotation angle α of equilateral triangle hole 
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Fig. 6 Relation curves between hole angle and buckling load 

Buckling analysis of square plates with different equilateral triangle hole angle shown in Fig. 5 is 

investigated, δA102 takes 12.566, 19.634 and 28.274 separately. For the equilateral triangular hole 

with same area, when α is lesser, the change of buckling load with hole angle is not obvious; otherwise, 

it is clear in Fig. 6. When α is greater (5o<α<20o), the buckling load of plates presents a trend of linear 

decrease with the increase of hole angle. When α is greater than 20o but less than 30o, the descend range 

of buckling load is prone to flat. When δA102 =19.634 and the hole rotates counter clockwise from 0o 

to 30o, the buckling load drops 17.46%.  

4.3 The Effect of Hole Location on Buckling Bearing Capacity. 

The effects of circular hole location on buckling bearing capacity are investigated in this section. 

The location of circular hole center moves along x-axis, y-axis and 45o-direction respectively in the 

first quadrant shown in Fig. 1. The dimensionless local geometric imperfection δd is 

δd=d/a                                                                                                                                            (7) 

where d denotes circular hole diameter and a denotes side length of plate. The hole diameters are 

20mm, 40mm, 60mm respectively. The dimensionless hole location  is 

=2l/a                                                                                                                                             (8) 

where l denotes the distance from hole center to plate center.  
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Fig. 7 Comparison of buckling load with the hole in diffenrent positions 

For the plate with same hole area, the buckling load presents a decrease trend with the increase of hole 

location in Fig. 7. When hole center moves along x-axis, the relation between buckling load and hole 

location is cubical; when it moves along y-axis or 45o-direction, the relation is linear. The greater the 

hole size is, the more obvious the effect of hole location on buckling load is.  

When hole size is same, but hole loaction is different, for example δd=0.4, the buckling load of the 

plate drops 8.52% whose hole location changes from 0 to 0.3 and hole center is located in x-axis, the 

buckling load drops 27.89% while hole center is located in y-axis. The change along y-axis of the hole 

center has the greatest impact on the buckling load. 

5. Conclusions 

The effects of hole parameters on the nonlinear buckling load of square perforated plates subjected 

to uniform compression load in the y-direction are studied by FEM. The goodness of fit between 

numerical solution and theoretical solution of critical buckling load is better. The curves between 
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defect factor and buckling load are obtained, some general conclusions and recommendations are 

summarized as follows. 

(1) For the plates with same hole area and different hole shape, the buckling bearing capacity of 

plate with a circular hole is greatest. The critical buckling load decreases linearly with the increase of 

defect factor.  

(2) When hole shape is same and hole area is smaller, the effect of hole angle α on the buckling load 

of plate is not obvious. For the plate with a square hole(15o<α<45o) and the plate with an equilateral 

triangular hole(5o<α<20o), the buckling load of plate both presents a trend of linear decrease with the 

increase of hole angle.  

(3) For the plates with same circular hole area, the buckling bearing capacity is inversely 

proportional to the spacing between hole center and structure center. When the center of hole is located 

in x-axis, the relation between buckling load and hole location is cubical; when it is located in y-axis or 

45o-direction, the relation is linear, and when it is located in y-axis, the change of hole location has the 

greatest impact on the buckling load.  

If the opening on plate structure is inevitable, the opening should be a circular hole and located in 

the center of the plate as far as possible.  
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