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Abstract: Finite mixture model (FMM) has been used extensively to fit such distribution in 
different study fields including medicine, biology, fisheries, forestry, environmental science, 
engineering, and economics. This study compares three diameter distribution models to fit 
mixed-species forest stands using four example plots with two or three species components 
in Daxing’an Mountain P.R. China. Our results indicated that the FMM models are more 
flexible to describe highly skewed and irregular diameter distributions for the whole plot, as 
well as provide the acceptable estimation for each species component and the mixing 
proportions. Thus, the FMM models can be a useful tool for effectively managing mixed-
species forest stands. 

1. Introduction  

A frequency distribution composed of two or more component distributions is defined as a 
“mixture” or “compound” distribution, involving a finite number of components. FMM has been 
used extensively to fit such distribution in different study fields including medicine, biology, 
fisheries, environmental science, engineering, and economics (e.g., MacDonald and Pitcher 1979, 
Zasada and Cieszewski 2005, Zhang and Liu 2006). FMM simultaneously estimates the parameters 
of each component distribution in the mixture, as well as the mixing probabilities of component 
membership (Chandra 1977, Everitt and Hand 1981, Titterington et al. 1985). A variety of statistical 
distribution functions have been used as the component distribution (Hasselblad 1969, Shaked 
1980), such as exponential (Bartholomew 1969), beta (Bremner 1978), logistic (Shah1963), gamma 
(Ashton 1971), normal (Behboodian 1970), Weibull (Falls1970), etc. Statistical methods have been 
applied to estimate the parameters of mixture distributions, ranging from moment method (Blischke 
1962), maximum likelihood (Falls1970), graphical technique (Kao 1959), to Bayes estimation 
(Padgett and Tsokos 1978). 

Forest researchers and practitioners were used to consider that FMM was too complicated to use 
and apply. With recent and rapid improvement and advances on computing technology and software 
packages such as R package (Leisch 2004), Stata (Deb 2008), SAS (SAS institute, Inc. 2010) and 
others (Haughton 1997), it is now relatively easy to fit a diameter-class distribution by FMM. 
However, the studies on FMM in the forestry and ecology literature were most focused on 
comparing the model fitting of “whole stand” by different methods (e.g., Zhang et al. 2001, Zhang 
and Liu 2006). Little attention has been paid to the fitting of component distributions in the mixture 
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distribution. Therefore, the main purpose of this study was to fit mixed two-species and three-
species forest stands, using four example plots, by three methods: (1) a single Weibull function for 
fitting the whole stand, (2) a single Weibull function for fitting each species component separately, 
and (3) a FMM model for fitting the 2 or 3 species components simultaneously. The performance of 
the 3 methods was compared with the fitting of the whole stand, the fitting of each species 
component, and the estimation of the mixing proportions for the species components. 

2. Theoretical Background   

Suppose a mixture distribution consisting of k components (j = 1, 2, …, k) with a random 
variable x of interest under study (e.g., tree diameter). The distribution of the jth individual 
component is described by a specific pdf, fj(x), and the general pdf, f(x, p), for the mixture 
distribution can be expressed as follows: 
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Where ja , jb  and jc  are the location, scale and shape parameters of the jth individual 
component distribution, respectively. The cumulative distribution function (cdf) of the jth 
individual component distribution is 
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Then, the compound cumulative distribution function is defined as 
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The maximum likelihood approach is commonly applied to fit a FMM model, due to its 
attractive statistical properties and relatively easy to use in practice (Chandra 1977). The joint 
likelihood density function is as follows  
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The natural logarithm of the likelihood function (logL) is expressed by 

( )[ ] ( ) ( ) ( )[ ]∑∑
==

+++==
n

i
kk

n

i
xpxpxppx

1
2211

1
ffflog,floglogL                          (6) 

The partial derivatives of logL are taken with respect to each of the model and mixing 
parameters of the mixture distribution. These partial derivatives are set equal to zero, and then 
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solved by a numerical iterative algorithm such as the Newton-Raphson algorithm to yield the ML 
estimates (McLachlan and Peel 2000). 

2.1.  Example Plots 
The four fixed sample plots were set up in 2000 and re-measured in 2005 and 2010. This study 

used the data of 2005. The plots were 0.06 ha in size. Trees with diameter at the breast height (dbh) 
≥5 cm were measured on the sample plots with an accuracy of 1 mm. The descriptive statistics of 
tree diameters for the four example plots and each species in the plot were shown in Table 1. All 
trees were grouped into 2-cm diameter classes. The ages of the four plots were between 60 and 70 
years old with basically reversed J-shaped diameter distributions. More trees were gathered in small 
diameter classes (5– 10 cm). The features of the four example plots were (1) Plot 1 had 63% 
Dahurian larch (5 – 25 cm) and 37% white birch (5 – 15 cm). The two species had similar 
frequency distributions (reversed J-shaped), as well as similar to the distribution of the whole plot; 
(2) Plot 2 had 67% Dahurian larch (5 – 17 cm) and 33% white birch (5 – 37 cm). The frequency 
distribution of Dahurian larch was highly skewed to the right, while the frequency distribution of 
white birch was uniform across the diameter classes; (3) Plot 3 had three tree species. Dahurian 
larch (41%, 5 – 23 cm) had a relatively normal frequency distribution, white birch (52%, 5 – 19 cm) 
had a skewed distribution to the right due to a few large-sized trees, and Mongolian pine (7%, 5 – 
19 cm) had a uniform distribution across the diameter classes; and (4) Plot 4 also had 3 species: 
42% Dahurian larch (5 – 27 cm), 25% white birch (5 – 16 cm), and 34% Mongolian pine (5 – 31 
cm). Dahurian larch had a skewed to the right distribution, while both white birch and Mongolian 
pine had relatively uniform distributions but different ranges of tree sizes. 

Table 1. Descriptive statistics of tree diameters in the example plots. 

Plot Species Number of  
Trees 

Observed  
Proportion Mean Std Min Max 

1 
Total 61  9.02 3.9109 5 23 
Larch 38 0.63 9.95 4.507 5 23 

White birch 22 0.37 7.55 1.8022 5 13 

2 
Total 111  10.18 6.5074 5 37 
Larch 74 0.67 7.41 1.9096 5 15 

White birch 37 0.33 15.73 8.576 5 37 

3 

Total 100  9.84 3.4604 5 23 
Larch 41 0.41 8.15 2.943 5 19 

White birch 52 0.52 11.12 3.2913 5 23 
Mongolian pine 7 0.07 7.56 1.45 5 19 

4 

Total 89  12.74 6.6999 5 31 
Larch 37 0.42 11.62 5.479 5 27 

White birch 22 0.25 9.64 2.9931 5 15 
Mongolian pine 30 0.34 16.4 8.2203 5 31 

2.2. Modeling Methods   
In this study, we chose the 3-parameter Weibull function (equation [2]) as the component density 

function. The location parameter a was fixed at 5 cm (i.e., the minimum measured tree diameter) 
and the scale parameter b and shape parameter c were estimated from the data. 

2.2.1.  Model Fitting of Whole Plot 
Use 20-point type for the title, aligned to the center, linespace exactly at 14-point with a bold and 
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italic font style and initial letters capitalized. No formulas or special characters of any form or 
language are allowed in the title. 

Words like “is”, “or”, “then”, etc. should not be capitalized unless they are the first word of the 
title. 

The parameter estimates of the three fitting methods and the standard errors (in parentheses) of 
the parameters for the four example plots were presented in Table 2. It was evident, according to the 
model AIC, that the Method 1 (FMM) fitted each example plot better than the Method 2 (a single 
Weibull) to fit the whole plot, except for Plot 3 (Table 2). However, the Method 1 (–2logL = 493.4) 
actually fitted the Plot 3 better than the Method 2 (–2logL = 498.3), but the AIC is designed to 
penalize the number of estimated model parameters. Because the number of the FMM model 
parameters (m = 8) was much larger than those of the single Weibull model parameters (m = 2) it 
appeared that the AIC of the Method 1 (509.4) was larger than that of the Method 2 (502.3). Note 
there was no AIC value for the Method 3 because it fitted each species separately and no model 
fitting statistics was available for the whole plot. 

Table 2. Parameter estimates (standard error) 
Method 1 

Plot b1 c1 b2 c2 b3 c3 p1 p2 AIC 

1 
2.395 0.5954 8.3111 0.6048   0.6424  292.8 
(0.3069) (0.1157) (0.5536) (0.3283)   (0.4413)   

2 
2.0881 0.5775 12.4659 0.6755   0.6456  562.6 
(0.1284) (0.06948) (0.2406) (0.1781)   (1.4309)   

3 
7.2498 0.5439 2.3807 0.5468 0.8674 1.828822 0.3396 0.4136 509.4 
(2.0595) (0.4586) (0.8340) (0.09926) (0.03490) (0.09926) (12.7683) (6.2704)  

4 
4.3579 0.1141 11.1591 0.1723 21.8590 0.7031 0.5633 0.1761 539.9 
(0.3276) (0.02809) (0.1555) (0.1326) (0.3276) (0.09881) (1.2657) (0.4325)  

3. Conclusions  

To evaluate the model fitting and prediction performance the bias, RMSE, and goodness-of-fit 
likelihood-ratio   test were computed and shown for each method and each example plot in Table 3. 
The model prediction and model residuals across the diameter classes are displayed for each 
example plot in Figures 1, respectively. The Plot 1 had a balanced reversed-J shape diameter 
distribution for the whole plot (Fig. 1(a)). Based on the likelihood-ratio   test all three methods 
adequately fitted this plot (p-value > 0.05), although the Method 1 had much smaller bias and 
RMSE than those of other two methods.  

Both Plots 3 and 4 had 3 species components and the diameter distributions of the whole plot 
were more irregular in shape, either bimodal (Plot 3, Fig 1(c)) or rotated-sigmoid (Plot 4, Fig 1(d)). 
For both plots, the Method 1 (FMM) was the only one fitting these irregular distributions well, 
while both Methods 2 and 3 failed to adequately describe them according to the likelihood-ratio   
tests (p-value < 0.05) and yielded much larger biases and RMSEs . Basically, the Methods 2 and 3 
produced typical reversed-J shape curves for these two plots, thus underestimated for the diameter 
class 6 cm and overestimated for larger diameter classes. 

Our model fitting and comparison results indicated that the mixture Weibull models were more 
flexible to fit regular and irregular diameter distributions Our results confirmed the findings in 
previous studies (e.g., Zhang et al. 2001, Liu et al. 2002, Zhang and Liu 2006). 
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Figure 1. Comparison of three model fitting methods for the example plots. (a) Plot 1, (b) Plot 2, (c) 
Plot 3 and (d) Plot 4. 
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