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Abstract: This paper discusses that the sustainable trade credit and inventory policy, 
with demand related to credit period and consumer environment sensitivity, under the 
carbon cap-and-trade regulation and tax regulation. And the firms make efforts to 
reduce the carbon emissions. The optimal credit period, order quantity and the carbon 
emission level of retailers can be obtained.  
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1. Introduction  

Low-carbon economy has been deeply rooted in the hearts of the people, and 
become a consensus, along with the development of low carbon economy concept. 
Under this background, the supply chain operation began to increasingly consider low 
carbon factors. In the low carbon supply chain study, many researchers analyzed the 
emission reduction behavior and the effects of carbon emissions trading on supply 
chain decisions, such as Du et al. (2013), Qin et al.(2016). But these studies did not 
consider the impact of trade credit on decision making. In reality, the trade credit can 
stimulate the market demand (Gao et al., 2014). Therefore, in the paper we mainly 
integrate the trade credit contract in the research of low carbon supply chain.  
2. Problem definition and notation 

In the model, the demand rate is a positive exponential function of the credit period 
as ( ) anD n ee= ,where ε and a are positive constants. For convenience, ( )D n  and 
D will be used interchangeably. We derive the optimal production quantity, the credit 
period and the carbon emission reduction investment under the carbon emission cap 
and trade regulation. Considering a carbon emission intensive firm, it produces the 
product to meet the market demand under the carbon cap-and-trade regulation. We 
assume the unit price of the buying or selling are both equal to ρ  .  

Denote 2 ( )CQ Q as the annual total carbon emission of the enterprise. For the given 
production quantity Q , the annual setup times are ( ) /D n Q  and the annual inventory 
holding cost is / 2hQ . The corresponding carbon emission linked to the setup times 
and the inventory holding are ˆ( ) /D n A Q and ˆ / 2Qh , respectively. The annual carbon 
emission during the production process is ˆ ( )cD n . Therefore, the total carbon emission 
related to producing, delivering and the storing product under the carbon emission 
reduction is defined as following: 

2
( ) ˆˆˆCO (Q) ( ) ( )

2
D n QcD n A h D n

Q
ξ= + + − .              (1) 

For the enterprise, the revenue is ( ) ( )j k nse D n− + . And the cost related to the 
production process is ( ) ( ) / / 2cD n D n A Q Qh+ + . Also, 2[ ( )]Z CQ Qρ −  is the emission 
cost or revenue resulted from the buying or selling permits. When 2 ( ) 0Z CQ Q− ≥ , the 
enterprise carbon emissions are less than the carbon cap. Thus, the enterprise can sell 
the permit to obtain the revenue. Otherwise, when 2 ( ) 0Z CQ Q− < , the enterprise 
carbon emissions are more than the carbon cap. Thus, the enterprise can buy the 
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permit to incur the cost. The investment of carbon emission reduction is 2 / 2uξ . Based 
on the rationale above, the annual profit of the enterprise 1( , , )n Q ξΠ can be written as  

( ) 2
1 2

( ) 1( , , )= e ( ) ( ) [ CO (Q)]
2 2

j k n D n Qn Q s D n cD n A h u Z
Q

ξ ξ ρ− +Π − − − − + − .  (2) 

Eqs.(2) can be transformed into the following Eq.(3): 
( ) 2

1
( ) 1( , , )= e ( ) ( ) ( ) ( ) ( ) ( )

2 2
j k n D n Qn Q s D n c c D n A A h h u D n Z

Q
ξ ρ ρ ρ ξ ρξ ρ− +Π − + − + − + − + +



 . (3) 

In what follows, we investigate and derive the enterprise’s optimal production lot 
size, the optimal carbon reduction technology investment and then the optimal credit 
period. 
2.1 The optimal production lot size  
 Maximizing the annual profit of the Eqs.(3) with respect to the production lot size, is 
equivalent to minimizing the following cost function: 

( ){ ( ) ( )}
2Q

D n QMin A A h h
Q

ρ ρ+ + +


                 (4) 

  For simplicity, we use the arithmetic-geometric inequality method. It is easy to 
know that the optimal production lot size can be obtained when  

( ) ˆˆ( ) ( )
2

D n QA A h h
Q

ρ ρ+ = + .                        (5) 

Therefore, the optimal production lot size is 
2

1

ˆ2 ( )( )
ˆ( )

D n A AQ
h h

ρ
ρ
+

=
+

.                          (6) 

The corresponding optimal value of Eqs.(4) is  
ˆˆ2 ( )( )( )D n A Ak h hk+ + .                       (7) 

2.2 The optimal carbon reduction technology investments 
Maximizing the annual profit of the Eqs.(3) with respect to the carbon reduction 

technology investment, is equivalent to maximizing the following function: 
21[ ( )]

2
Max u D nx x ρx− + .                        (8) 

It is easy to know that the optimal carbon reduction technology investment can be 
obtained when  

*
1 ( ) /D n uξ ρ= .                           (9) 

The corresponding optimal value of Eq.(8) is  
2 2 ( ) / 2D n uρ .                           (10) 

2.3 The optimal credit periods 
Based on the analysis of Section 3.1 and Section 3.2, the inventory problem of the 

enterprise is reduced to a single decision variable of n. 
In this section, we try to obtain the optimal credit period for the enterprise. In order 

to find the optimal solution , we derive the first and the second derivatives of 
 with respect to n in the following. 

* * 2 2 2
( )1 1 1

1/2

( , , ) ( ) e ( )

( ) ˆˆ2( )( )
2

an
a j k n an

an

n Q aes a j k c c ae
n u

a e A A h h

ξ ρ ee ρ e

e ρ ρ

− −∂Π
= − − − + +

∂

− + +



;      (11) 
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2 * * 2 2 2 2
2 ( ) 21 1 1

2

2 1/2

( , , ) 2( ) e ( )

( ) ˆˆ2( )( )
4

an
a j k n an

an

n Q a es a j k c c a e
n u

a e A A h h

ξ ρ ee ρ e

e ρ ρ

− −∂ Π
= − − − + +

∂

− + +



.    (12) 

Clearly, * *
1 1 1( , , )n Q ξΠ is a continuous function of n for [0, )n∈ ∞ . Therefore, 

* *
1 1 1( , , )n Q ξΠ has a maximum value for [0, )n∈ ∞ .To identify whether n is 0 or positive, 

we define the following discrimination term. 
* *

2 21 1 1
1

0

1/2

( , , ) ( ) ( ) /

ˆˆ( ) 2( )( ) / 2

n

n Q s a j k c c a a u
n

a A A h h

ξ ε ρ ε ρ ε

ε ρ ρ

=

∂Π
∆ = = − − − + +

∂

− + +



.      (13) 

If 
2 * *

1 1 1
2

( , , ) 0n Q
n

ξ∂ Π
<

∂
, * *

1 1 1( , , )n Q ξΠ is strictly a concave function in n , hence 

exists a unique maximum solution 1n  obtained when
* *

1 1 1( , , ) 0n Q
n

ξ∂Π
=

∂
 . If 1 0∆ ≤ , 

then * *
1 1 1( , , )n Q ξΠ  is maximized at *

1 0n = ; if 1 0∆ > , * *
1 1 1( , , )n Q ξΠ  is maximized 

with *
1 1 0n n= > . Based on Eqs.(12), it is easy to obtain if 

2 ( ) 2 2 2 2 2( ) e ( ) 2 /a j k n an ans a j k c c a e a e ue ρ e ρ e− −− − ≤ + − , * *
1 1 1( , , )n Q ξΠ is strictly 

concave function in n . Hence, a unique maximum solution exists. If 
2 * * 2

1 1 1( , , ) / 0n Q nξ∂ Π ∂ ≥ , then * *
1 1 1( , , )n Q ξΠ is a convex function of n . Therefore, the 

optimal solution of * *
1 1 1( , , )n Q ξΠ  is at one of the two boundary points (0 or∞ ). 

Substituting∞with Eqs. (11), we have * *
1 1 1lim  ( , , ) / 0

n
n Q nξ

→∞
∂Π ∂ < . Hence, n = +∞ is 

not an optimal solution, which implies that the optimal solution is *
1 0n = . 

Consequently, the following results can be derived. 
Theorem 1.if 2 ( ) 2 2 2 2 2( ) e ( ) 2 /a j k n an ans a j k c c a e a e ue ρ e ρ e− −− − ≤ + − , then: 

(1) * *
1 1 1( , , )n Q ξΠ is strictly concave function in n , hence exists a unique optimal 

solution. 
(2) If 1 0∆ ≤ , then * *

1 1 1( , , )n Q ξΠ  is maximized at *
1 0n = . 

(3) If 1 0∆ > , then there exists a unique 1 0n > such that * *
1 1 1( , , )n Q ξΠ  is 

maximized at *
1 1 0n n= > . 

2.4 The global solutions 
Notice that the annual profit function of the enterprise 1( , , )n Q ξ∏ has three decision 

variables with the production lot size, the carbon reduction technology investment and 
the credit period. Therefore, we need to prove the Hessian matrix is negative definite 
at * * *

1 1 1( , , )n Q ξ of 1( , , )n Q ξ∏ . The Hessian matrix of 1( , , )n Q ξ∏ with respect to  
is shown in the following. 

2 2 2
1 1 1

2

2 2 2
1 1 1

1 2

2 2 2
1 1 1

2

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

n Q n Q n Q
n n Q n
n Q n Q n QH

Q n Q Q
n Q n Q n Q

n Q

ξ ξ ξ
ξ

ξ ξ ξ
ξ

ξ ξ ξ
ξ ξ ξ

 ∂ Π ∂ Π ∂ Π
 ∂ ∂ ∂ ∂ ∂ 
 ∂ Π ∂ Π ∂ Π

=  
∂ ∂ ∂ ∂ ∂ 

 ∂ Π ∂ Π ∂ Π
 

∂ ∂ ∂ ∂ ∂  

.                (14) 

Therefore, we can obtain that the first-order master sequence is:
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2 2
2 ( ) 2 21

1 2

( , , ) ( ) e ( ) ( )
an

a j k n an ann Q e a es a j k c c a e A A a e
n Q

eφ e ρ e ρ ρξe− −∂ Π
= = − − − + − + +

∂



 . 

The second-order master sequence is  
2 2 2

21 1 1
2 2 2

3 2 ( ) 2 2

4 2 2 2 2

( , , ) ( , , ) ( , , )( )

2 ( ) [ ( ) e ( ) ]

( )

an a j k n an an

an

n Q n Q n Q
n Q n Q

e A A Q s a j k c c a e a e

Q a e A A

ξ ξ ξφ

e ρ e ρ e ρξe

e ρ

− − −

−

∂ Π ∂ Π ∂ Π
= −

∂ ∂ ∂ ∂

= − + − − − + +

+ +







.  

The third-order master sequence is  
2 2 2 2

1 1 1 1
22 2

1 1
3 2 2 2 2 2

1 1 1 1
2 2

2
1

2
1

( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , ,
( , , )

n Q n Q n Q n Q
Q Q Q n Qn Q n Q

n n Qn Q n Q n Q n Q
Q n

n Q
n Q

n

ξ ξ ξ ξ
ξ ξξ ξφ

ξ ξ ξ ξ
ξ ξ ξ ξ

ξ
ξ

ξ

   ∂ Π ∂ Π ∂ Π ∂ Π
   ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ Π ∂ Π   = −
   ∂ ∂ ∂∂ Π ∂ Π ∂ Π ∂ Π
   

∂ ∂ ∂ ∂ ∂ ∂  

∂ Π
∂ Π

+
∂ ∂

2
1

2

2 2
1 1

2 2
3 2 ( ) 2 2

) ( , , )

( , , ) ( , , )

( )2 ( ) [ ( ) e ( ) ( ) ]
an an

an a j k n an an

n Q
Q n Q
n Q n Q

n Q

a e aeu e A A Q s a j k c c a e A A a e
Q u

ξ

ξ ξ
ξ ξ

e ρee ρ e ρ e ρ ρξe− − −

 ∂ Π
 ∂ ∂ ∂ 
 ∂ Π ∂ Π
 

∂ ∂ ∂ ∂ 

= + − − − + − + + +
 



. 

We can know that if  
2

2 ( ) 2 2
1

( )( ) e ( ) 0
an

a j k n an an aes a j k c c a e a e
u

ρeη e ρ e ρξe− −= − − − + + + < , 

then 1 0φ < , 1 0φ > ,and 3 0φ < .Therefore, the Hessian matrix is the negative definite. 
We can say that the unique solution * * *

1 1 1( , , )n Q ξ  is the global maximum solution. 
Based on the analysis, we come up with Theorem 2. 
Theorem 2. If 1 0η < , then there exists a unique optimal solution  to 
maximize 1( , , )n Q ξ∏ .

 3. Conclusions 
Under the restriction of carbon emissions regulations, this paper investigates the 

trade-off between revenue and cost of trade credit considering the consumer 
environment sensitivity. The results can help enterprises to make reasonable credit and 
operational decision-making, for improving the supply chain operation performance 
and sustainability. 
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