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Abstract In this paper, we further study some sufficient conditions for complete 
convergence for weighted sums of arrays of rowwise negatively dependent random 
variables with non-identical distribution under some weaker moment conditions. Our 
result generalize and improve the corresponding result of Wang et al. [7]. 
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1. Introduction 

Definition 1.1 A finite collection of random variables 1 2, , , nX X X  is said to be negatively 

dependent (ND) if both 
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hold for all real numbers 1 2, , , nx x x . An infinite sequence { , 1}nX n ≥  is said to be ND if 

every finite subcollection is negatively dependent. 
    In the past decades, many authors have studied this concept and provided some interesting 
results and applications. For example, we refer to [2, 4, 5, 6]. Recently, Wang et al. [7] obtained 
the following complete convergence result for weighted sums of ND random variables with 
identical distribution. 

Theorem 1.1 Let { , 1, 1}niX i n≥ ≥  be an array of row-wise ND random variables which is  

stochastically dominated by a random variable X , and { , 1, 1}nia i n≥ ≥  be an array of 

constants such that 
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=∑  for some α  with 0 2α< <  and some δ  with 
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0 1δ< < . Assume further that 0niEX =  when 1 2α< < . If for some 0h >  and 0γ >  

such that 

                              {exp( )} ,E h X γ < ∞                           (1.3) 

then for any 0ε > , 
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where 1/p α≥  and 1 1(log )nb n nαg = . 

  Inspired by the above theorem obtained by Wang [7], in this work, we will further study the 
compete convergence for weighted sums of arrays of rowwise ND random variables under some 
mild moment conditions, which are weaker than the above Theorem 1.1. Some complete 
convergence for the maximum weighted sums of arrays of rowwise ND random variables are 
obtained without the assumption of identical distribution. The result generalize and improve the 
corresponding result of Wang et al. [7]. 

2. Main result and proof 

Throughout this paper, C  will represent a generic positive constant whose value may change 

from one appearance to the next, and ( )n na O b=  will mean n na Cb≤ . Let ( )I A  be the 

indicator function of the set A. 

Definition 2.1 A sequence of random variables { , 1}nX n ≥  is said to be stochastically 

dominated by a random variable X  if there exists a positive constant C  such that 

( ) ( )nP X x CP X x≥ ≤ ≥  for all 0x ≥  and 1n ≥ .  

Lemma 2.1 [3] Let 1 2, , , nX X X  be ND random variables and 1 2, , , nf f f  be a sequence 

of Borel functions which all are monotone increasing (or all are monotone decreasing), then 

1 1 2 2( ), ( ), , ( )n nf X f X f X  are ND random variables. 

Lemma 2.2 [8] Let 2p ≥  and { , 1}nX n ≥  be a sequence of ND random variables with 

0nEX =  and 
p

nE X < ∞  for every 1n ≥ . Then, there exists a positive constant C  

depending only on p  such that for every 1n ≥ , 
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Lemma 2.3 [1] Let { , 1}nX n ≥  be a sequence of random variables which is stochastically 

dominated by a random variable X . For any 0, 0u t> >  and 1n ≥ , the following two 

statements hold: 

( ) [ ( ) ( )]u u u
n nE X I X t C E X I X t t P X t≤ ≤ ≤ + >

;
          (2.2) 

( ) ( ).u u
n nE X I X t CE X I X t> ≤ >                   (2.3) 

Theorem 2.1 Let { , 1, 1}niX i n≥ ≥  be an array of row-wise ND random variables which is 

stochastically dominated by a random variable X  and { , 1, 1}nia i n≥ ≥  be an array of real 

numbers. Assume that there exist some δ  with 0 1δ< <  and some α  with 0 2α< ≤  

such that 
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and 1sα ≥  such that E X β < ∞ , then for any 0ε > ,                           
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where 1 1(log )nb n nαg =  for some 0γ > . 

Proof  For 1i∀ ≥  , define 
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Firstly, we will prove that 
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For 1 2,α< ≤  it follows from 0niEX = , Lemma 2.3, the hölder inequality and the Markov 

inequality that 
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For 0 1α< ≤ , it follows from Lemma 2.3, the Jensen inequality and the Markov inequality again 
that 
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Hence, to prove (2.5), it suffices to show that 
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In fact, by the Markov inequality, we get that
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Hence, for 2q > , it follows from Lemma 2.2 and the Jensen inequality that 
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Take a suitable constant q  such that 
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It follows from the Cr inequality, Lemma 2.3 and the Jensen inequality that 
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     < ∞  (see the proof of (2.15)).                                            (2.16) 
This completes the proof of the theorem 2.1. 
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