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Abstract. Image restoration easily smears image edge in unsteady area and produces stair 
effect in steady area. In order to overcome these shortcomings, the paper proposes a half-
quadratic energy functional regularization model (EFRM) and structured Newton iterative 
algorithm. Firstly, for blurred image by system and Gaussian noise, fitting term is described 
by L2 norm, regularization term is described by half-quadratic function, which can 
accurately describe image singular property, and the fitting term and regularization term 
constitute image restoration EFRM. Secondly, resort to Fenchel transform, by introducing 
auxiliary variables, the primal EFRM is converted into augmented image restoration EFRM. 
Finally, take advantage of preconditioned theory, Hessian matrix of the transformed model 
is structured, a new Newton project iterative algorithm is proposed. Comparing to several 
state-of-art approaches, numerical experiment results show that the proposed EFRM can 
effectively protect image edge and reduce stair effect, and show better visual effect and 
higher peak signal-to-noise ratio (PSNR).   

1. Introduction  

In science and industry, inverse problems arise in a variety of practical applications, such as 
compress sensing, computerized tomography imaging and biomedical imaging. These applications 
[1] for estimating some kinds of attributes of object, for example, in guiding system, we want to get 
high quality image of moving object. Unfortunately, because noise and parameters of imaging 
system are difficult to estimate, the measurement image is seriously blurred.  

In order to obtain ideal image, construction of energy functional regularization model (EFRM) of 
image restoration, which is composed of fitting term and regularization term, is the most effective 
method [2]. Supposed that the measurement image is blurred by imaging system and Gaussian noise, 
according to the noise statistical distribution, the fitting term is described by L2 norm [3], in order 
to embody singular property of image, the regularization term is characterized by total variation 
(TV) function space [1]. However, in steady area of image, TV can easily cause stair effect and 
produce false edges. For overcoming these shortcomings of TV regularization term, a lot of 
improved models are proposed, such as general TV model, adaptive TV model and fractional order 
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TV model [4], but the parameters of EFRM are difficult to determine. Although lifting order 
number of regularization term can reduce the stair effects, it seriously smears image edges. Thus, in 
image restoration processing, how to protect image edge in unsteady area and reduce stair effect in 
steady area is a dilemma problem. Mixture EFRM can solve the problem. However, the model is 
fourth order, which easily produces Gibbs phenomena [5].  

In algorithm design, the semi-norm of TV is non-differential, traditional algorithm based on 
gradient is unable to use directly. TV semi-norm is approximated by smooth function, reference [1] 
proposed the steepest descent algorithm, but the convergence speed of the algorithm is slow. In 
order to accelerate the convergence speed of algorithm, using Fenchel transform, the primal EFRM 
is converted into differential dual model, reference [6] proposed gradient projection iterative 
algorithm. Using gradient of fitting term, reference [7] proposed fast iterative soft threshod 
algorithm (FISTA). However, the convergence speed of first order algorithm based on gradient is 
still slow. For overcoming the shortcoming, using second order differential smooth function to 
approximate TV semi-norm, design quasi-Newton projection iterative algorithm, BFGS algorithm 
and preconditioned conjugate gradient least square algorithm, however, Hessian matrix of EFRM is 
determind by fitting term and regularization term, the scale of Hessian matrix, without special 
structure, is large, and it is difficult to compute inverse matrix of Hessian matrix. In order to easily 
compute inverse Hessian matrix, singular value decomposition (SVD), general SVD (GSVD), 
diagonal and block diagonal Hessian matrix algorithms are proposed [3]. However, it is a difficult 
task for us to obtain diagonal Hessian matrix.  

The rest of this paper is organized as follows : In section 2, we establish EFRM for restoration 
image blurred by system and Gausian noise. taking advantage of Fenchel transform, we convert 
primal EFRM into augmented EFRM, which is advantage of algorithm design. In section 3, using 
preconditioning theory, Hessian matrix of augmented EFRM is diagonalized, then a project Newton 
iterative algorithm is proposed. In section 4, in order to show the efficiency of the proposed model 
and algorithm, numerical experiments comparing the proposed with some recent algorithms are 
carried out. In section 5, conclusions and future works are given.  

2. Half Quadratic Regularization Model  

Supposed that ideal image and measurement image obey independent Gaussian distribution, the 
fitting term is described by L2 norm, in order to protected image edge during the processing of 
image restoration, regularization term is described by half quadratic function, the EFRM of image 
restoration is formulated as  

( ){ }uu
u

E inf=∗                                                                   (1) 

Where, ( ) ( ) ( ) xDugAuu dE
L ∫ΩΩ

+−= ϕλ2

2

, { }•inf  represents lower limit, ( )•ϕ is continuous and 

differential convex function, which satisfies linear growth condition, D is first order differential 
operator that represents image singular property. If the solution of (1) exists, then matrix AAT has 
inverse matrix, and operator A and D must satisfy the following relationship  

( ) ( ) { }0=∩ DDAA TT kerker                                                        (2) 
Where ( )•Ker represents matrix kernel space. Because of the complex property of (1), it is unable to 
solve directly, using Fenchel transform [1], the potential function ( )•ϕ is converted into dual 
function ( )•φ , which is expressed as  

( ) ( ){ }stst
s

ϕφ +−= 2sup                                                            (3) 
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Using convex dual relationship, ( )sϕ is obtained from ( )tφ , s is substituted by Du , carrying out 
simple deduction, plug (3) into (1), we get the augmented EFRM, which is expressed as  

( ) ( ){ }tutu
u

，， Einf=∗∗                                                             (4) 

Where ( ) ( ) ( )( ) ( ){ } xtDutgAutu
t

dE
L ∫ΩΩ
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2

， , dual variable t represents singular property 

of image. Formula (4) converts the solution of (1) into auxiliary variable and ideal image, and 
auxiliary variable represents image singular characteristics, the significant meaning of the 
transformation integrates signal filter processing into singular detection processing. The gradient of 
(4) about uand t is expressed as  

( ) [ ( ) tDuDgAuAtuG TT λ22 +−=，E , ( ) ( )( )]tDu 'φλ +2                                  (5) 
The Hessian matrix of (4) about uand t is expressed as  
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Because of convex, lower semi-continuous function of ( )•ϕ , using Fenchel transform, the dual 
potential function is also convex, lower semi-continuous function, hence ( ) 0≥t''φ . According to (2), 
formula (2) about uand t is positive, hence, the solution of (4) is unique.  

3. Computational Theory of Augmented EFRM  

3.1.  Classical Newton Iterative Algorithm  

If the scale of Hessian matrix is not large, and the inverse matrix is easily computed, we can 
obtain the solution of augmented EFRM by classical Newton algorithm, which is expressed as 
following  

1) Set maximum iterative number N , [ ]T000 tud ,= .  
2) Compute (5) for gradient of augmented EFRM, and compute (6) for Hessian matrix.  
3) Compute search direction of Newton iterative algorithm, which is expressed as  

( )[ ] ( )tu,Gtu,Hθ EE 1−=                                                          (7) 
4) Using linear search algorithm for getting search step length, which is defined as  

( ){ }θd ττ
τ

+=
> kk E
0

inf                                                             (8) 

5) Update the solution of augmented EFRM, which is written as  
θdd kkk τ+=+1                                                                 (9) 

6)  If ( ) ( ) ε≤−++  kkkk ,E,E tutu 11 or Nk > , jump 7), otherwise, set 1+= kk , jump 2) 

7) Output the solution kd .  

3.2.  Augmented EFRM Satisfying Karush-Kuhn-Tucker(KKT) Optimal Conditions  

Supposed that the magnitude of pixels and edges is bigger than zero, in others words, solutions 
of (4) are non-negative. Formula (4) is converted into optimal problem with conditioned constraint, 
which is written as  

( ){ }tu,Einf  , 0≥u , 0≥t                                                      (10) 
According to (10), the first order partial derivative of ( ) [ ]Ttu,tu,c = is written as  
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[ ]Tji e,e=∇c                                                                (11) 
Where, ie represents standard thi vector, ∇ represents gradient. From (11), we can know that the 
constrained conditions of feasible solutions of (10) are independent. If formula (10) has optimal 
solutions, which must satisfy Karush-Kuhn-Tucker (KKT) conditions [1], which is formulated as 

( ) 0∗∗

∂
∂ tu

d
,E  , 0l                                                      (12) 

Where, l  represents Lagrangian multiplier. According to complementary conditions of KKT, we 
have  

( ) 0=
∂
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d
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According to (13), if 0=*
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other words, the gradient of (4) may be zero, which makes (7) be zero, we get the optimal solutions. 
Unfortunately, the computation of large inverse Hessian matrix is costly huge, which leads to the 
slow convergence speed of Newton iterative algorithm. In order to accelerate the convergence speed 
of algorithm, the Hessian matrix must be approximated by special structural matrix.  

3.3.  Structural Hessian Matrix of Newton Iterative Algorithm  

In order to make Hessian matrix structure, formula (9) is formulated as structural projection, 
which is written as 

( )θdd kkk ojPr τ+=+  1                                                      (14) 
Where, ( )kkk ,E tuGΛθ •= , kΛ represents diagonal matrix, kτ represents step-length, ( )• ojPr is 
projection operator.  

According to (14), the key problem of acceleration of Newton iterative algorithm is how to 
structure Hessian matrix, and to make characteristic value cluster near 1 and far from zero, which 
make inverse Hessian matrix compute easily. The preconditioned matrix S  is formulated as  
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Where, 11H and 22H are given by (6). If t  is approximated by unitary matrix, and the image is 
extended by proper periodic boundary conditions, the tight operator A  is block circulant circulant 
block (BCCB) structure, then, 11H of AAT is diagonalized by fast Fourier transform (FFT). 
Supposed that operator D  is approximated by first order differential operator, then, DDT is 
diagonalized by FFT, too, that is FΓFDD 2

∗=T . 11H  is diagonalized, and 22H itself is diagonal 
matrix, hence, the inverse matrix of S is computed directly. Because of ISS =•1- , the search 
direction of (7) is reformulated as  

( ) ( )tu,GSStu,H EE −=•• θ1−                                                (16) 
Formula (16) is simplified as  
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Where ( ) 1
1121

1
221211

−−−= HHHHHB . Formula (17) is inverted and upper triangle block matrix, the 
characteristic values are clustered near 1. Set θSθ = , the search direction is obtained.   
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3.4.  Structural Newton Iterative Algorithm  

1) Initialization, set 0=k , 0u , 0t , maximum iterative number N .  
2) According to (5), (6), compute gradient and Hessian matrix of EFRM. Compute structural 

matrix by (15).  
3) Using conjugate gradient algorithm for computing (16), then get the search direction of 

Newton iterative algorithm; Using line back search algorithm, then update step length, and 
update the solutions of EFRM by (14).  

4) If ( ) ( ) ε≤−++  kkkk ,E,E tutu 11 or Nk > , jump 5); otherwise, set 1+= kk , jump 2).   

5) Output restoration image ∗u .   

4. Experiment Results and Analysis  

In this section, we illustrate the effectiveness of the proposed method, which is compared with 
deconvwnr function, deconvreg function, functions can be obtained from Matlab toolbox. 
Deconvwnr function restores blurry image using the Wiener filter algorithm, which is optimal in a 
sense of the fitting term described by L2 norm. Deconvreg function restores blurry image using the 
regularized filter algorithm, which is optimal in the sense of fitting term described by L2 norm and 
regularized term described by the Laplacian operator. FISTA restores blurry image using first order 
method, which is optimal in the sense of fitting term characterized by L2 norm and regularized term 
characterized by TV semi-norm. Our tests are done by using Matlab 7.12.0 (R2011a) with Intel(R) 
Core(TM) i7-4700MQ CPU 2.20 GHz and 8GB memory.  

 

                       
(a)Original image              (b)blurry image (25.79db)         (c) deconvwnr(14.07db) 

                       
(d) deconvreg(33.29db)            (e) FISTA (34.33db)           (f) the proposed (35.62db) 

Figure 1  Restoration comparison of different algorithms. .  
In figure 1, figure 1(a) is original image, figure 1(b) is blurred by imaging system and Gaussian 

noise, and a lot of edges are lost and PSNR is 25.79db. Figure 1(c) is restored by deconvwer 
function that belongs to Wiener filter, restoration result is worse, the edges of image is completely 
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lost. Deconvwer function only takes advantage of fitting term and tries to get solution by computing 
invert matrix of imaging system. However, imaging system is ill-posed. PSNR of figure 1(c) is 
14.07db, it is lower than PSNR of blurry image. Figure 1(d) is restored by deconvreg function, the 
edge of restoration is smooth, and PSNR of figure 1(d) is bigger than that of figure 1(b). Figure 1(e) 
is produced by FISTA, the edge of restoration visual effect is better than that of figure 1(d), and 
PSNR of figure 1(e) is higher than that of figure 1(d). Figure 1(f) is restored by the proposed 
algorithm, PSNR is higher than that of other algorithms, which shows that the proposed algorithm is 
better than other algorithms.  

5. Conclusions  

Fitting term is described by L2 norm, regularization term is characterized by half quadratic 
function, by introducing auxiliary variable, the primal EFRM is converted into augmented EFRM. 
Hessian matrix of augmented EFRM is determined by fitting term and regularization term, because 
of Hessian matrix without special structure, it is difficult to compute the inverse Hessian matrix. In 
order to solve the problem, by imposing periodic boundary condition on image and constructing 
preconditioned matrix, Hessian matrix is converted into diagonal matrix. Based on classical Newton 
iterative algorithm, a projection Newton iterative algorithm based on preconditioned matrix is 
proposed. Comparing with other state-of-art algorithms, the proposed method obtains better visual 
effect and higher PSNR.  
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