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Abstract.  
Rolling tension control is an important factor to ensure the quality of steel products. In actual 
production process, there are shortcomings such as large overshoots, long adjustment time and the 
parameters are difficult to adjust in real time because rolling tension model is a high-order nonlinear 
system when conventional PID controller is used to control the tension. In this paper, a single 
neuron adaptive PID tension control method is proposed. The experimental results show that 
compared with traditional PID controller, single neuron adaptive PID controller is used to shorten 
the adjustment time of the tension control to 3% ~ 10%, full realization of zero static error is 
achieved and the robustness of the system is obviously enhanced. 

Introduction 
The control object selected in this paper is composed of the mechanical of four-stand cold rolling 

mill, which consists of uncoiler, four rolling mills and crimping machines. 

 
Figure 1 Four-stand cold rolling mill structure 

In it, 1: uncoiler, 2-5: first to fourth mill, 6: crimping machine, 7-11: tension meter, 12: pickling 

and washing, 1T - 4T : 1, 2 mill, 2, 3 mill, 3, 4 mill, and the tension between 4 mills and crimps. 

Tension control is a key issue in continuous production process, especially for strip cold rolling 
mill. In particular, the control precision of strip tension has a great influence on the rolling stability 
and the quality of finished strip. For example, the tension between the two racks increases, and its 
change will reduce the rolling force of the second rack. Torque increases, forward slip decreases and 
speed decreases reduce the first rack rolling force and increase forward slip value, and it may also 
affect the crew’s other rack technological parameters change. In rolling process, the tension’s 
mutual influence role can be said to "pull the whole body", so tension problem is the core of rolling 
process. In view of the characteristics of tension control in rolling process, the identification, 
modeling, and adaptive control of neural network in the system has the following characteristic [1]: 

(1) Strong non-linear mapping ability, which can approximate any complex nonlinear 
relationship. 

(2) High degree of self-learning and self-organizing ability to learn and adapt to the dynamic 

T

   

T

 

T

 

 
   

 
1

   

T
 

2
     

     

5
    

4
     

     

3
     

           
   

 
    

      

   

2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Engineering Research, volume 123

1185



characteristics of severe uncertain systems; connections between neurons are diversified, the 
connection strength between the neurons are of plasticity, which is equivalent to changes in synaptic 
transmission information capability so that the network can be self-organized through learning and 
training to meet the requirements of different information processing. 

(3) The parallel processing of information makes it have the ability to carry out a large number of 
operations; network units can make similar process, and the entire network information processing 
is large-scale parallel. 

(4) Simple structure with good robustness and high reliability. 
(5) Associative memory and fault tolerance; the storage of information within the neural network 

is stored in many neurons by content distribution, and each neuron stores part of the information. 
Each part of the network has the equipotential effect on the storage of information, and the loss of 
some information can still be restored from the complete information. 

Therefore, this paper puts forward the control of rolling tension by combining traditional PID 
control and neural network. 

Single neuron adaptive PID controller principle 
PID controller. In analog control system, the most commonly used control law of controller is PID 
control. PID controller is a linear controller [3], which constitutes a control error according to the 

given value r(t)  and the actual output value c(t) . Deviation proportion (P), integral (I) and 

derivative (D) form the control quantity by linear combination to control the controlled object, so it 
is called PID controller. Its control law is 

t

p D
I 0

1 de(t)u(t) K [e(t) e(t)dt T ]
T dt

= + +∫
                             (1) 

pK  is scale factor; IT  is integral time constant; DT is derivative time constant. 
B. Single neuron adaptive PID controller 
Single neuron adaptive PID controller’s block diagram [2,4] is shown in Figure 2. 

 
Figure 2 Neuron adaptive PID control system 

In Figure 2, the converter input reflects the state of the controlled process and control set, set 

r(k) the set value, y(k)  the output value, the values 1x (k)， 2x (k) ， 3x (k) of the required state which 

are controlled by converted by single neuron learning got by the converter are, 
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iw (k) is the weighting coefficient corresponding to ix (k) ; K is the proportion coefficient of 

neurons, K> 0. e(k)  = r(k)  - y(k) , is the output deviation at time k. The neurons generate a control 

signal by an association search 
3

i i
i=1

u(k)=K w (k)x (k) u(k-1)+∑
                                       (3) 

The adaptive function of single neuron PID controller is realized by changing the weight iω . 

Learning algorithm is adjusting the weight rule. It is the core of single neuron PID controller and 
reflects its learning ability. The learning algorithm is as follows: 

i i(k 1) (k) z(k)ω ω η+ = +                                              (4) 

In it, z (k) is the learning signal decreasing with the process, η> 0 is the learning rate. 
Neural network PID controller mainly corrects weighting coefficient through output deviation so 

as to realize the purpose of adaptive and self-organizing control. The main operation [4] is divided 
into: 

(1) Parameter initialization. Parameters of single neuron adaptive PID controller are given any of 
the initial values for controlling at the beginning of the program. The parameters of the next time 
are adjusted according to output deviation and learning algorithm of the controlled system. 

(2) Generate a control signal u(k) . Through single neuron and PID controller, generate control 

signal u(k) to control the controlled object and output signal y(k) . 

(3) Calculate output deviation e(k) . The output error e(k)  is calculated by the given input value 

and the feedback output value y(k) in use of adjusting the weighting factor. 

(4) Adaptive adjustment weighting factor iw (k 1)+ . The output deviation e(k) (or performance 

index function 1J  and 2J ) is generated by feedback, and iw (k 1)+  is got by adjusting e(k) (or 

performance index function 1J  and 2J ) and weight iw (k) . 

(5) Termination condition judgment. If the termination condition is satisfied (the minimum error 
criterion is satisfied), the output signal at this time is the optimal solution output, and the calculation 
is terminated; otherwise, go to step (2) and continue to adjust the weight. 

Rolling tension control model 
In this paper, the mathematic model of tension in cold tandem mill is deduced and generated 

based on the view that tension is produced by adjacent racks’ speed difference. i and i + 1 are the 

two racks adjacent to the tandem mill; L is the spacing between adjacent racks; ihv is the exit speed 

of the i-th rack strip, and (i+1)hv
is the inlet speed of the i + 1 rack strip ; rolling direction is from 
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left to right, which is shown in Figure 3. 

 

Figure 3 Rolling tension model 
 

Set (i+1)hv
, then the length of the work piece will be elongated 

L=L-L'∆                                                      (5) 

In it, L is the length after elongation (m); L ' is the original length of the strip (m); L∆  is the 

amount of elongation (m). 

The relative elongation ∑ can be expressed as: 

L L
L ' L L
∆ ∆

∑ = =
-∆                                                  (6) 

The change rate in relative elongation is: 
2

(i+1)h ih
d (1 )= (v v )
dt L
∑ +∑

-
                                      (7) 

In normal rolling state, tension deformation generated by the speed is elastic deformation, so this 
deformation obeys Hooke's law: 

T
E

∑ =
                                                       (8) 

In the formula, E is elastic modulus (Mpa); T is tension value (N) 

When T/E<<1, there is 

(i+1)h ih
dT E= (v v )
dt L

-
                                           (9) 

Assuming that (i+1)hv  is not affected by slippage amount, and the influence of the slippage is 

attributed to the change of ihv , the formula in complex frequency domain is, 

i

i(i+1)h ih0

i

1E
v aT(s) L

Ev a Lv (s) v (s) 1 ss
Ev aL

= =
- ++

                            (10) 

In the formula, ih0v (s)  is the strip exit speed of the i-th rack at -T = 0. 
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If the double closed-loop system is represented by I type system, the transfer function of the 
whole control link can be expressed as 

1 2
0

1 2

k kG (s)
s( s 1) s 1

ε
τ τ

=
+ +                                          (11) 

In the actual system, the structure and parameters of the double closed-loop system are fixed, and 

the variable parameters of the controlled system areε , 2k and 2τ  . 

In it, ， 2k (2 ~ 3)∈ ， 2 (0.1 ~ 0.4)τ ∈ ，ε  is a constant. According to Literature [10], take 2k = 2.5, 

2τ = 0.2,ε  = 1, 1k = 1, 1τ = 0.2, then 

0
1 2.5G (s)

s(0.15s 1) 0.2s 1
=

+ +                                       (12) 
After discretization (sampling time 0.1s), then 
y(k)=2.9168y(k-1)-2.8369y(k-2)+0.92y(k-3)+0.0000136u(k-1)+0.00005328u(k-2)+0.0000135u(k-3)                                                                      

(13) 

Simulation results 
Conventional PID controller. The initial parameters are: scale coefficient: 10, integral coefficient: 
10, differential coefficient: 3. The simulation curve (simulation time 15s) got is shown in Figure 4 
(a). It can be seen that the response is very slow, so we should increase the scale coefficient: scale 
coefficient: 30, integral coefficient: 10, differential coefficient: 3. The simulation curve (simulation 
time 15s) is shown in Figure 4 (b): 
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                   (a)                                      (b) 

Figure 4 Simulation diagram of the conventional PID controller 
Although the simulation curve is ultimately stable at a given value, zigzag fluctuation occurs due 

to the instability of the system due to large scale coefficient. So continue adjusting, reduce scale 
factor, and reduce corresponding integral coefficient to reduce the overshoot and adjust the 
differential coefficient. The simulation curve is still not ideal. 
Simulation of single neuron adaptive PID controller. The simulation results of single neuron 
adaptive PID controller are ideal, and the weighting curve of the proportional, integral and 
differential is shown in Figure 5 (a). The relative value of the output tension curve is shown in 
Figure 5 (b), and the performance indicators are better than the conventional PID controller. 
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Figure 5 Single Neuron Adaptive PID weighting factors and output rolling tension curves 
It can be seen from the simulation results that single neuron adaptive PID controller allows the 

controlled object to change within a certain range and has better anti-interference ability. The new 
controller is essentially a variable coefficient proportional, integral, differential compound 
controller, and its input is similar to conventional PID controller input. The physical meaning is 
clear. Its parameters are mainly obtained through online learning with a certain algorithm. 

Conclusion 
In this paper, a modeling method of tension control model in cold tandem rolling system is 

proposed, and single neuron adaptive PID control is successfully applied. The experimental results 
show that single neuron adaptive PID controller has better adaptive ability to automatically adjust 
the parameters. As long as appropriate learning parameters are chosen, the system is without 
overshoot or overshoot is small with no static and strong robust, which can greatly improve the 
dynamic quality of typical nonlinear time-varying objects, adapt to time-varying characteristics of 
the controlled process, and ensure that the control system runs in the best condition? It has a wide 
range of applications in industrial process control. 
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