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Abstract.  
It is extremely significant to precisely control exit temperature of heat exchanger in industrial 
production. However, traditional control strategy has a great deficiency to be applied to temperature 
control system which is nonlinear, large inertia, pure delay and variant parameters. Smith predictor 
(SP) provides an effective method to compensate for time delays, but it might make the system 
unstable out of mismatch of identification model. Dynamic matrix control (DMC) can improve 
system performance by multiple steps prediction and online rolling optimization on the basis of 
feedback correction. This paper compares and analyzes the advantages and disadvantages of the 
above two algorithms by the means of modeling and simulation. 

Introduction 
Heat exchanger is widely used in many industrial situations to exchange or transmit heat between 

hot and cold liquid. Control of its outlet temperature is a complex process due to its low response and 
non-linear behavior caused by many factors such as leakage, friction, etc [1]. Conventional PID 
controller  combined with other intelligent algorithm is generally applied to such plants to obtain 
satisfactory results when the pure time delay is negligible or small. But the system will become 
unacceptable when dead time is too large regardless of tuning of the primary controller [2].  

A valid method to eliminate the influence of response lag  is to adapt Smith predictor to acquire 
feedback information in advance, which can optimize control strategy ahead of time according to 
setpoint and predicted output [3]. Though Smith predictor (SP) offers potential improvement in the 
closed loop performance over traditonal controllers, it is faced with a serious problem of inevitable 
mismatches between model and actual process [4].  

Model Predictive Control (MPC) is another feasible scheme to forecast multiple model response by 
constructing prediction model, which contains many advanced approaches such as DMC [5]. 
Dynamic Matrix Control (DMC) uses step response representation to predict the input and output. 

The paper is organized as follows. The structure of SP is formulated in the first section, which 
compares the performance of classical SP with advanced SP. Next part discusses the principle of 
DMC, which introduces calculation flow of DMC algorithm. Third section tests the characteristics of 
the two control strategies aimed at the same plant on the condition with huge time delay and inexact 
model in the platform installed with MATLAB. Finally, conclusions are given in section 4. 

Structure of Smith Predictor (SP). 
Classical SP. The structure of classical Smith Predictor is shown in Fig. 1, whers Gc(s) is the 

controller, Gp(s) is the actual plant, Gm(s) is the model, and Gmo(s) is the delay free part of Gm(s). 
The closed loop transfer function between the reference input r(s) and the output y(s) is  

𝐺𝐺1(𝑠𝑠) =
𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠))

1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)(𝐺𝐺𝑚𝑚𝑚𝑚(𝑠𝑠) − 𝐺𝐺𝑚𝑚(𝑠𝑠) + 𝐺𝐺𝑝𝑝(𝑠𝑠))
.                                                                                 (1) 
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when model is perfectly equal to actual plant, i.e. 𝐺𝐺𝑝𝑝(𝑠𝑠) = 𝐺𝐺𝑚𝑚(𝑠𝑠), the characteristic equation is given 
by (Eq. 2) 

1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑚𝑚𝑚𝑚(𝑠𝑠) = 0.                                                                                                                                 (2) 

This implies that the characteristic equation is free of the time delay so that the primary controller 
Gc(s) can be designed with respect to Gm(s). The achievable performance can thus be greatly 
improved over a conventional system without delay compensation. 
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Fig. 1  Structure of Classical Smith Predictor
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Fig. 2  Structure of Advanced Smith Predictor
H(s)

 
Advanced SP. Fig. 2 illustrates the structure of advanced Smith Predictor (SP), where H(s) is 

creatively added feedback part that is a typical low order low pass filter. The design of H(s) can 
strengthen the anti-jamming ability of the system. The closed loop transfer function from the 
reference input r(s) to the output y(s) is 

𝐺𝐺𝑟𝑟(𝑠𝑠) =
𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)

1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑚𝑚𝑚𝑚(𝑠𝑠) + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐻𝐻(𝑠𝑠)(𝐺𝐺𝑝𝑝(𝑠𝑠) − 𝐺𝐺𝑚𝑚(𝑠𝑠))
.                                                               (3) 

The closed loop transfer function between the disturb d(s) and the output y(s) is 

𝐺𝐺𝑑𝑑(𝑠𝑠) =
𝐺𝐺𝑝𝑝(𝑠𝑠)(1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑚𝑚𝑚𝑚(𝑠𝑠) + 𝐻𝐻(𝑠𝑠)𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑚𝑚(𝑠𝑠))

1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑚𝑚𝑚𝑚(𝑠𝑠) + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐻𝐻(𝑠𝑠)(𝐺𝐺𝑝𝑝(𝑠𝑠) − 𝐺𝐺𝑚𝑚(𝑠𝑠))
.                                                               (4) 

Eq. 4 can evaluate the robustness of system when choosing different filter. This paper will employ 
one order low pass filter as feedback unit.  

Principle of Dynamic Matrix Control (DMC).  DMC is a model predictive control method based 
on the step response model, which includes mainly the following three parts: prediction model, 
rolling optimization and feedback correction.    Fig. 3 is a detailed control block diagram describing 
DMC. 
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Fig. 3  Control Block Giagram of GMC  
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Predictive Model. Prediction model makes full use of coefficient information of step response to 
get coming equivalent model output state. 
The coefficients of the system response under step input signal are 𝑎𝑎𝑖𝑖 = 𝑎𝑎 (𝑖𝑖T),  where  𝑖𝑖 = 1, 2,⋯ , 
and T is the sampling period. When the plant reaches equilibrium, there exists 𝑎𝑎𝑖𝑖 ≈ 𝑎𝑎𝑁𝑁 (𝑖𝑖 > N), so 
the system dynamic information can be described approximately by the vector 𝑎𝑎 = [𝑎𝑎1 ⋯  𝑎𝑎𝑁𝑁]𝑇𝑇 
where N is modeling domain. At time (k), suppose that the control input remains unchanged, and the 
future N predictive outputs are  y�0(𝑘𝑘 + 𝑖𝑖|𝑘𝑘).  Giving M  increments ∆u(𝑘𝑘),⋯ ,∆(𝑘𝑘 + 𝑀𝑀 − 1), the 
future outputs  y�𝑀𝑀(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) at time (𝑘𝑘 + 𝑖𝑖) is 

𝑦𝑦�𝑀𝑀(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) = 𝑦𝑦�0(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) + � 𝑎𝑎𝑖𝑖−𝑗𝑗+1∆𝑢𝑢(𝑘𝑘 + 𝑗𝑗 − 1), 𝑖𝑖 ∈  [1,𝑁𝑁].                                     (5)
min (𝑀𝑀,𝑖𝑖)

𝑗𝑗=1

 

Rolling Optimization. Rolling optimization calculates most suitable controller output so as to 
minimize difference between predicted values and reference points in limited time domain. 
The cost function adopted in DMC as follows 

𝑀𝑀𝑀𝑀𝑀𝑀  𝐽𝐽(𝑘𝑘)∆𝑢𝑢𝑀𝑀(𝑘𝑘) =∥ 𝑤𝑤𝑝𝑝(𝑘𝑘) −  y�𝑃𝑃𝑃𝑃(𝑘𝑘) ∥𝑄𝑄2+∥ ∆𝑢𝑢𝑀𝑀(𝑘𝑘) ∥𝑅𝑅2 .                                                                (6) 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒            y�𝑃𝑃𝑃𝑃(𝑘𝑘) =  y�𝑃𝑃0(𝑘𝑘) + 𝐴𝐴∆𝑢𝑢(𝑘𝑘) ,         𝑤𝑤𝑝𝑝(𝑘𝑘) = [𝑤𝑤(𝑘𝑘) ⋯ 𝑤𝑤(𝑘𝑘 + 𝑃𝑃)]𝑇𝑇  

y�𝑃𝑃0(𝑘𝑘) = �
𝑦𝑦�0(𝑘𝑘 + 1|𝑘𝑘)

⋮
𝑦𝑦�0(𝑘𝑘 + 𝑃𝑃|𝑘𝑘)

� ,       y�𝑃𝑃𝑃𝑃(𝑘𝑘) = �
𝑦𝑦�𝑀𝑀(𝑘𝑘 + 1|𝑘𝑘)

⋮
𝑦𝑦�𝑀𝑀(𝑘𝑘 + 𝑃𝑃|𝑘𝑘)

� ,           𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
𝑎𝑎1 ⋯
⋮
𝑎𝑎𝑀𝑀

⋱
⋯

0
⋮
𝑎𝑎1

⋮ ⋱
𝑎𝑎𝑃𝑃 ⋯

⋮
𝑎𝑎𝑃𝑃−𝑀𝑀+1⎦

⎥
⎥
⎥
⎤
.         (7) 

𝐴𝐴 is dynamic matrix; wp(k) is the desired multiple outputs; 𝑄𝑄 and 𝑅𝑅 are weighting matrices; 𝑀𝑀 is 
control domain; 𝑃𝑃 is optimization domain. Optimal minization calculated by (Eq. 6) is 

∆𝑢𝑢𝑀𝑀(𝑘𝑘) = (𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑅𝑅)−1𝐴𝐴𝑇𝑇𝑄𝑄�𝑤𝑤𝑝𝑝(𝑘𝑘) −  y�𝑃𝑃0(𝑘𝑘)�.                                                                                 (8) 

𝑀𝑀 control increments ∆𝑢𝑢𝑀𝑀(𝑘𝑘) are solved by (Eq. 8) at one period, but the implemented is only the 
first value ∆𝑢𝑢(𝑘𝑘). Next time point, ∆𝑢𝑢(𝑘𝑘 + 1) is recalculated as output of the controller. 

Feedback Correction. Feedback correction can overcome the interference brought by the 
inaccuracy of the system model. 
At time (𝑘𝑘), the control move ∆𝑢𝑢(𝑘𝑘) is implemented and the output prediction is 

𝑦𝑦�𝑁𝑁1(𝑘𝑘) = 𝑦𝑦�𝑁𝑁0(𝑘𝑘) + 𝑎𝑎 ∆𝑢𝑢(𝑘𝑘).                                                                                                                    (9) 

𝑦𝑦�𝑁𝑁1(𝑘𝑘) is the output prediction when the control moves at time  (𝑘𝑘 + 1) and keeps invariant in the 
future time instants, so it is the basis for constructing initial output prediction after shifting 𝑦𝑦�𝑁𝑁1(𝑘𝑘)  
next time. In order to overcome the effects of model uncertainties and interference, at time  (𝑘𝑘 + 1), 
the system output error is denoted as  e(𝑘𝑘 + 1) = y(𝑘𝑘 + 1)−𝑦𝑦�1(𝑘𝑘 + 1|𝑘𝑘), which is used for feedback 
correction, and the modified future output prediction is described by 

𝑦𝑦�𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘 + 1) = 𝑦𝑦�𝑁𝑁1(𝑘𝑘) + ℎ 𝑒𝑒(𝑘𝑘 + 1).                                                                                                    (10) 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ℎ = [ℎ1 ⋯ ℎ𝑁𝑁]𝑇𝑇  𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.  

As time changes, 𝑦𝑦�𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘 + 1) should be shifted to be the initial predictive value of time (𝑘𝑘 + 1) 
denote 
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𝑦𝑦�0(𝑘𝑘 + 1 + 𝑖𝑖|𝑘𝑘 + 1) = 𝑦𝑦�𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘 + 1 + 𝑖𝑖|𝑘𝑘 + 1), 𝑖𝑖 ∈ [1,𝑁𝑁 − 1].                                                       (11) 

For a stable system, 𝑦𝑦�0(𝑘𝑘 + 1 + 𝑁𝑁|𝑘𝑘 + 1)  equals 𝑦𝑦�0(𝑘𝑘 + 𝑁𝑁|𝑘𝑘 + 1)  by approximation, and the 
shifting process can be represented as follows 

𝑦𝑦�𝑁𝑁0(𝑘𝑘 + 1) ≈ S𝑢𝑢𝑢𝑢𝑢𝑢𝑦𝑦�𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘 + 1),   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢 = �

0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0
0

0 ⋯ 0 1
0 ⋯ 0 1

�              (12) 

Simulation and Verification. 
In general, the heat exchanger outlet temperature control system can be considered as a first-order 
plant as (Eq. 13), where Kp is proportion gain, 𝑇𝑇𝑝𝑝 stands for inertia constant,  𝑇𝑇𝑇𝑇𝑇𝑇 denotes time delay. 
The distinct of Smith Predictor (SP) algorithm and Dynamic Control Matrix (DMC) algorithm is 
studied under the condition of disturbance and model mismatch. The input signal is step signal with 
final value being 1. The sampling period is set as 10s,  Kp = 1,  𝑇𝑇𝑝𝑝 = 60, 𝑇𝑇𝑇𝑇𝑇𝑇 = 40.  

𝐺𝐺𝑝𝑝(𝑠𝑠) =
𝐾𝐾𝑝𝑝

1 + 𝑇𝑇𝑝𝑝 ∙ 𝑠𝑠
𝑒𝑒−𝑇𝑇𝑇𝑇𝑇𝑇∙𝑠𝑠.                                                                                                                       (13) 

Disturbance Rejection. When applying 10% noise disturbance relative to the set track to the 
controller output, SP strategy has stronger anti-interference ability and quicker response with rise 
time being 180s, and DMC algorithm deviates from stable value of the plant with steady error being 
0.08 and has lager overshoot about 10% as shown in Fig. 5. 

Fig. 5  step response with noiseFig. 4  step response without noise  
 

Fig. 7  step response when Kp decreases 10%Fig. 6  step response when Kp increases 10%  
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Model Mismatch. In order to test robustness to variations in process parameters, the simulations 
are repeated for a 10% increase or decrease in gain and time delay. The closed-loop responses with 
parameters floating are described in Fig. 6 to Fig. 9. When gain increases 10%, step response of DMC 
has shorter adjustment time approximately 400s in the same overshooting of 5%. Whatever the value 
of time delay is longer or shorter, SP algorithm always exists greater stable error which weakens 
dynamic performance of the system. 

Fig. 9  step response when Tol decreases 10%Fig. 8  step response when Tol increases 10%  

Conclusion 
The result shows that Smith and DMC algorithm are effective to improve performance of the system 
with time delay with identification model being accurate. However, once parameters of the process 
are inconsistent with actual plant, SP algorithm has poor performance, especially while time delay 
mismatches slightly. DMC algorithm provides a feasible solution to suppress the above defects. On 
the other hand, SP control strategy can reject disturbance of controller output, which is worth further 
research to restrain noise in DMC algorithm. 

Summary 
The paper proposed two control algorithm of heat exchanger outlet temperature, which are Smith 
Predictor (SP) and Dynamic Matrix Control (DMC). The performance analysis and comparison 
between the above two blue prints is performed by simulation. And the results suggested that DMC 
was a better choice when model parameters mismatching with actual system. 
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