

Identifying misclassified bug reports

Suo Hu1, Zhou Zou2, *
1School of Computer and Science, Hubei Engineering University, Xiaogan, Hubei 432000, PR China

2Discipline Construction Office, Hubei Engineering University, Xiaogan, Hubei 432000, PR China
*Corresponding author: zouzhou@hbeu.edu.cn

Keywords: bug reports, classification rules, misclassification.

Abstract The data mining methodology for identification and detection of bugs is an important
application. Especially separating bugs from non-bugs is a general challenge. When software
developers classify bug reports, they may misclassify bug reports with bias and errors. All issue
reports are analyzed by combining the classification rules from open-ihm project and Herzig et al.
(2012). A comparison on the classification results of different authors has been extracted which
shows the misclassification rate. Depending on the percent of misclassification rates, it is concluded
that the classification of bugs in Herzig et al. (2012) can be applied to the open-ihm project and it
exhibited the similar proportion of misclassified bugs as reported in Herzig et al. (2012).

Introduction

When we talk about bug in Information Technology area, it is not a kind of insect, but it represents
an error or fault in the software which displays invalid output or wrong results. In general, most bugs
are produced from errors in software and human mistakes. Almost each software or program will
contain a large number of bugs, therefore, when users find bugs, they will report bugs to developers.
Nowadays it is becoming normal to analyze bug databases to figure out where bugs have occurred in
the past time and predict how it will occur in the future. In bug databases, there are some types of bugs.
For instance, they are arithmetic bugs, interfacing bugs, team working bugs, syntax bugs, logic bugs
and so on. Bugs reports always request for semantically changes to source code. Additionally, other
issue reports request different solutions such as fixing code, adding new features, updating
documentation, internal refactoring and so on. In this way, if the request is not about fixing errors in
the code so that it will be considered as a non-bug issue.

Open-ihm is an open source software project which contributes to data and information collection
from poverty families. It aims to help developers and researchers to analyze and record the income
data of household. The purpose of building open-ihm is to use information technology to everywhere
of the world. Open-ihm is knows as an innovative and reliable data collection method and it can be an
open and quick way to collect the data. The significant issue is that open-ihm software is required to
assist experts and non-experts in the analysis of data using specified models.

The total classification process in Herzig et al (2012) will be carried out in four steps. In the first
stage, the first author will analyze all the issue reports and assign to category by using the
classification rules. In the second stage, my supervisor will classify these issue reports again without
knowing the results of the first stage. Next, both authors will compare their classified issue reports
and detect the classification conflicts-that is, find out the difference in the classification results.
Finally, re-classify the different results by a joint pair-inspection of both authors with the comments
of issue reports and classification rules.

Here are two research questions which will be the aims of this project:
Can the classification of bugs in Herzig et al. (2012) be applied to the open-ihm project?
Does the open-ihm project exhibit the similar proportion or misclassified bugs as reported in

Herzig et al. (2012)?

2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 123

1514

Summary of Literature Review

How do bugs get reported. According to Nicolas Bettenburg et al. (2008) indicates the way to make
a good bug report. On one hand bug reports are vital evidence to indicate problems of software, on the
other hand bug reports contains the details of description about the errors as well as the location.
However, there are different qualities of bug reports on the websites. Bettenburg et al mentions that
the quality of bug reports will be investigated in the view of developers. The aim of it is to find out the
factors which impact the quality of bug reports. A questionnaire has been applied and the conclusion
is “there is a mismatch between what developers consider most helpful and what users provide”. It
means for both users and developers they all have different views on which factors impact the bug
reports most. The requirements of bug reports should provide some important and sensitive
information to suit both reporters and developers.

According to Simon Tatham (1999), the purpose of this article is to figure out the way to report
bugs effectively. Actually the object of bug reports is to help the developers to realize which parts of
the software go wrong. Tatham indicates that “many bug reports provide nothing or give the wrong
information”. In order to improve this issue, he suggests users either show the program failures in
person, or provide the detailed stages on how you made it failed. Some comments like “it does not
work” or “I cannot tell how it goes wrong” will not be useful. The journal shows what users should
care and which part needs to be avoiding when reporting bugs. He suggests users describe every step
in details and give their own comments and solutions as possible.
How do bugs get classified. There is a set of classification rules and categories in Herzig et al. (2012).
There are six categories of classification and they are BUG, RFE, IMPR, DOC, REFAC and OTHER.
The definitions of these are from Herzig et al. (2012).

BUG: means Fix Request, definition is “Issue reports documenting corrective maintenance tasks
that require semantically changes to source code.”

RFE: means Feature Request, definition is “Issue reports documenting an adaptive maintenance
task whose resolving patch(es) implemented new functionality.”

IMPR: means Improvement Request, definition is “Issue reports documenting a perfective
maintenance task whose resolution improved the overall handling or performance of existing
functionality.”

DOC: means Documentation Request, definition is “Issue reports solved by updating external (e.g.
website) or code documentation (e.g. JavaDoc).”

REFAC: means Refactoring Request, definition is “Issue reports resolved by refactoring source
code. Typically, these reports were filed by developers.”

OTHER: means Other Request, definition is “Any issue report that did not fit into any of the other
categories. This includes: reports requesting a back port (BACKPORT), code cleanups (CLEANUP),
changes to specification (rather than documentation or code; SPEC) general development task
(TASK), and issues regarding test cases (TEST).”

How do bugs get misclassified. According to Herzig et al. (2012), an issue report will be
classified as bug if it requests for corrective code maintenance. However, some issue reports request
for “perfective and adaptive maintenance, refactoring, discussions, requests for help, and so on”
(Antonio et al. 2008) which do not request for code maintenance, and would not be classified as bugs.
In addition, Antonio et al (2008) mentioned that some issue reports are classified as bugs, but
essentially they are referring to non-bug issues. Issue reports are classified by developers manually so
incorrect empirical developers will produce bias in parts of confusing reports. Therefore, the result of
the classification reports is not accurate.

Summary of Research Methodology
In this project we have combined the two different classification rules from open-ihm and Herzig et al.
(2012). We will introduce the stages of classification bug reports and show how to analyse the data
set.

Advances in Engineering Research, volume 123

1515

Data set. In this project the aim of research is to examine if the classification bug reports in Herzig et
al. (2012) can be used in open-ihm. And observe if it can result in similar proportion of misclassified
bugs as reported in Herzig et al. (2012). So the data set are bug reports in open-ihm project of Google
code which are all reported by users and developers.
Classification rules in Herzig et al. (2012). According to Herzig et al. (2012), it demonstrates the
classification categories and rules of issue reports. As these issue reports are collected from five
projects and chosen from RESOLVED, CLOSED, VERIFIED and FIXED.
 Classification in open-ihmIssue reports in open-ihm project are allocated unique ID and many
labels. When a new issue is being reported, first users need to consider this issue is a defect or a new
feature request, then users should fill in the summary of the issue and description about some details.
The most important label is Type which will be classified in this research project. Therefore, there is
a table to introduce the category of Type in open-ihm.

Short name Long name Explanation Classification rules
Defect Type-Defect Report of a software defect Same as BUG

Enhancement
Type-
Enhancement

Request for enhancement
Same as RFE and
IMPR

Task Type-Task
Work item that does not change the
code or documentations

Same as OTHER
(Sub-category of
OTHER)

Review Type-Review Request for a source code review Same as REVIEW
Other Type-Other Some other kind of issue Same as OTHER

Table 3.2 The classification categories and rules of Google Code
Merged classification rules in this project.The merged classification rules will be applied into this
project so that we need ensure they are in same categories. In this way, we need to transform the
category. The new rules and previous categories in different projects are shown in table 3.3.

New
categor
y

Category in Herzig
et al. (2012)

Category in
open-ihm

New classification rules

BUG BUG Defect Same as BUG in Herzig et al. (2012)
RFE RFE Enhancement Same as RFE in Herzig et al. (2012)
IMPR IMPR Enhancement Same as IMPR in Herzig et al. (2012)
DOC DOC Other Same as DOC in Herzig et al. (2012)
REFAC REFAC Other Same as REFAC in Herzig et al. (2012)
REV OTHER Review Same as Review in open-ihm

OTHER OTHER Task, Other
Combine OTHER in Herzig et al. (2012)
and Task in open-ihm

Table 3.3 The new classification rules in this project
Classification phases.According to Herzig et al. (2012) we have conducted the manual classification
rules in four phases:

In the first phase, one person acts as the first author who will inspect all the issue reports and
classify them into different categories using the new classification rules.

In the second phase, another person acts as the second author who will do the same work again
without knowing the classification result done by first author.

In the third phase, two copies of classification results from the first author and the second author
will be compared to detect classification conflicts. This means, find out the different results from
phase one and phase two.

In the last phase, discuss the classification conflicts—issue reports and make them resolved by a
joint pair-inspection of both authors. In the re-classification phase, all the comments of issue reports
and classification rules should be considered in depth.

Advances in Engineering Research, volume 123

1516

The first and second phase of the inspection will be processed individually and both authors know
nothing about the classification results from each other. This ensures all the issue reports will be
classified equally.
Flow chart. A flow chart has been designed to show all the steps in this project below.

Fig. 3.4 Flow chart in this project

Discussion of Findings
The primary aim of this chapter is to demonstrate the final classification results and analyze the

results. So we abandoned the classification results from both authors. In Herzig et al. (2012) among
7401 issue reports there are 3093 reports need to be reclassified. In this project among 273 issue
reports there are 142 reports will be re-classified. In this project we have analyzed all 273 issue
reports from open-ihm and calculated them into different categories before the classification.

Original category Amount of category
Defect 177
Enhancement 73
Task 15
Review 2
Other 6
Total 273

Table 4.1 Category in open-ihm

Advances in Engineering Research, volume 123

1517

And the original category should be transformed into new category in order to better classification.
New category Amount of category
BUG 177
RFE 69
IMPR 2
DOC 3
REFAC 3
REV 2
OTHER 17
Total 273

Table 4.2 New category classification
Below are the charts showing final classification results of each category. (Fig. 4.3-4.7)

Fig. 4.3 Final classification results of original Defect

Fig. 4.4 Final classification results of original Enhancement

Fig. 4.5 Final classification results of original Task

Advances in Engineering Research, volume 123

1518

Fig. 4.6 Final classification results of original Review

Fig. 4.7 Final classification results of original Other

From the classification results and the conclusions in Herzig et al. (2012) some conclusions have
been made:

Issue report classification are unreliable: In this project all 273 issue reports (including open
issues) have been classified and 135 of them are found to be misclassified---that is, the total
misclassification rate is nearly 50%.

Almost every second bug is not a bug: 45.1% of all bug reports do not refer to corrective code
maintenance.

Feature Request and Improvement Request are easily mixed up: In Type-Enhancement there
are 51.9% of reports are Feature Request and 27.3% of them are Improvement Request.

Task, Review and Other are easily misclassified: The misclassification rates of Task, Review
and Other are 100%.

Summary

The classification of bug reports is a way to help developers find out where the errors locate in
software. And deal with bug reports requires human effort and experience. However, we still get
some limitations to prevent it running better. First we could not rule out all the errors in manual
inspection. That means, developers would get bias as the restriction of their experience and
knowledge. Then we need to improve the classification rules more perfect because we found the
definitions are not very clear between Feature Request and Improvement Request. The last one is the
way we merge the classification conflicts.

As Herzig et al. (2012) indicated “our motivation for this work was to have a well-classified set of
bug reports and features, which we now can leverage (and share) for future research”. We have some
views on future predicting bug reports and automatic classification. However, it still requires more
bug databases and more experience to achieve. Additionally, we suggest we could use the same
format of categories when we reporting bugs so that it will be easier to share the bug reports among
all the databases.

Advances in Engineering Research, volume 123

1519

The misclassification will impact some related studies which use the data sets directly without
validation. The misclassification rates can reflect the data quality of bug databases. As we know, the
reason of misclassification is that there are different views on bug classification between users and
developers. In many cases users report issue reports may not know the difference between
improvement, feature request or bug. So the main work for developers is to assign these issue reports.
When an issue report gets misclassified, it means we have not figured out the request in this issue
report so that the solution probably will not be effective and useful. As Herzig said, “misclassification
also impacts the relative order of the most defect-prone files”, in this way, it will be more difficult for
bug prediction.

References

[1] E. S. Raymond. (1991). The New Hacker’s Dictionary, The MIT Press, Cambridge.

[2] GIGER, E., PINZGER, M. and GALL, H., (2010) Predicting the fix time of bugs, 2010, ACM, pp.
52-56.

[3] Grottke, M., & Trivedi, K. S. (2005). A classification of software faults. Journal of Reliability
Engineering Association of Japan, 27(7), 425-438.

[4] HANGAL, S. and LAM, M.S., (2002) Tracking down software bugs using automatic anomaly
detection, 2002, IEEE, pp. 291-301.

[5] HOVEMEYER, D. and PUGH, W., (2004) Finding bugs is easy. ACM SIGPLAN NOTICES,
39(12), pp. 92-106.

[6] Howden, W. E. (2005) Software test selection patterns and elusive bugs. In Computer Software
and Applications Conference, 2005. COMPSAC 2005. 29th Annual International, IEEE, 1, pp.
25-32.

[7] J. Gray. (1985). Why do computers stop and what can be done about it? Technical Report 85.7,
PN87614.

[8] Herzig, K., Just, S., & Zeller, A. (2012). It’s not a Bug, it’s a Feature: How Misclassification
Impacts Bug Prediction.

[9] Wikipedia (2013). Software bug.

[10] Tatham, S. (1999). How to report bugs effectively. Ultimo acesso, 13.

[11] ZIMMERMANN, T., PREMRAJ, R., BETTENBURG, N., JUST, S., SCHROTER, A. and
WEISS, C., (2010) What Makes a Good Bug Report? Institute of Electrical and Electronics
Engineers, Inc, pp. 618-643.

[12] Weiß, C., Premraj, R., Zimmermann, T., & Zeller, A. (2006). Predicting effort to fix software
bugs. Issues, 11.

[13] Emerson, M., Thomas, Z., Christian, B. and Nachiappan, N., (2013) The Design of Bug Fixes.

[14] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Gu´eh´eneuc, (2008) Is it a bug or an
enhancement? A text-based approach to classify change requests, in Proceedings of the 2008
conference of the center for advanced studies on collaborative research: meeting of minds, 23,
pp. 304–318.

Advances in Engineering Research, volume 123

1520

