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Abstract. Synchronization of multi-coupled dynamical networks has received considerable 
attention recently. However, it is often difficult to estimate the coupling coefficients since we cannot 
get the exact boundaries of the variables for most chaotic systems. In this paper the network 
consisting of N (N≥3) coupled FHN systems will synchronize by adding only one adaptive feedback 
gain equation without exactly estimating the coupling coefficients of the chaotic systems, which is 
very useful for future practical applications.  

I. Introduction 
Synchronization of interacting oscillators in biological systems has been widely studied over 

the last few years. Classical phenomena such as mutual synchronization, entrainment and chaotic 

synchronization are now observed in many biological experiments and numerical simulations 1-4.  

The FitzHugh-Nagumo (FHN) model is a two-dimensional simplification of the widely known 

Hodgkin–Huxley model 5 describing the signal transmission across axons in neurobiology. In the 

past ten years, Most of the methods mentioned above are used to synchronize two or three coupled 

FHN chaotic systems. Synchronization of multi-coupled dynamical networks has received 

considerable attention recently. Deng et al. studied the relation between coupling strength and the 

dynamics of multi-coupled FHN system6,7. In these studies, an estimation of coupling coefficient 

should be given before designing some controllers. However, as is known, it is often difficult to 

estimate the coupling coefficients since we cannot get the exact boundaries of the variables for most 

chaotic systems8. To overcome these difficulties, in this paper, an effectively adaptive 

synchronization approach is proposed, based on the complex dynamic network model consisting of 

N (N≥3) nonlinearly diffusively coupled FHN systems under external electrical stimulation. In fact, 

the network will synchronize by adding only one adaptive feedback gain equation without exactly 

estimating the coupling coefficients of the chaotic systems, which is very useful for future practical 

applications. 

The rest of the paper is organized as follows. In Sect. 2, dynamics of nonlinear cable model for 

individual FHN neuron are investigated. Then, in Sect. 3, a network model of multi-coupled FHN 

neurons is presented. In Sect. 4, adaptive synchronization criterion for the complex dynamical 

network is proposed. The numerical simulations given in Sect. 5 demonstrate the effectiveness of 

the control method. Finally, conclusions are given in Sect. 6. 
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II. Dynamics of Individual Neuron 
In Ref.9 and 10, based on the FitzHugh-Nagumo (FHN) simplification of the Hodgkin-Huxley 

model for active membranes5, a nonlinear cable model was developed to study the response of 

cylindrical cells to external electric fields.The model equation is a coupled partial differential 

equation for the transmembrane voltage V along the nerve fibre and the recovery variable W of the 

form: 
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where x and y are membrane voltage V and recovery variable W rescaled by PV , the peak of the 

active potential, respectively. 
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denotes the 

threshold membrane voltages.  

In our previous literature11, the dynamics of individual FHN neuron under external electrical 

stimulations are studied. With the variation of the stimulation and the initial condition of the neuron, 

the complex behaviors including periodicity, quasiperiodicity and chaos are revealed. When the 

parameters are ,1.0,1,10 === Abr  and the frequency of the external stimulation ,129Hzf =  the 

individual neuron without coupling is chaotic.  

III. Multi-Coupled FHN Network Model 
Consider a multi-coupled dynamic network consisting of N (N≥3) nonlinearly coupled FHN 

systems with uncertain nonlinear diffusive couplings, which is described by: 
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The network topology of the multi-coupled system is shown in FIG.1. As shown in Ref.12, 

such a ring is synchronized identically for sufficiently large values of id . In the following section, 

an adaptive feedback gain equation for id will proposed to achieve the synchronization. 
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FIG.1 Network topology of multi-coupled FHN system 

IV. Adaptive Synchronization of Multi-Coupled Fhn Network 

Let us define the synchronizing errors of the system as )()( txtxe jik −= or

);,,3,2,1,)(()( jiNjityty ji ≠=−  , then, 
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Where .22422323112 −−− −−−−=−−−−= NNNN eeeeeeee  ，  

The problem of synchronization between the coupled systems can be translated into a problem 

of how to realize the asymptotical stabilization of the system (2) at the origin. The goal is to design 

the adaptive feedback gain equation id , such that .0)(lim =→∞ tet  

Here, we propose the feedback gain as follow: 
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where 0>ik is the coefficient representing the coupling strength of the network. 

Consider the coupled system with N FHN neurons, which is described by Eq. (2) in section 3. 

Similarly, we can have a block matrix )1(2)1(2,21 )()( −×−
∗∗ = NNjipddP ， . The diagonal elements of P are 

N-1 two-order symmetrical matrices. The front N-2 matrices are：
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The other non-zero elements of the matrix )( 21
∗∗ ddP ，  are
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positive definite, then synchronization of the multi-coupled FHN chaotic systems is achieved by 

adding the adaptive feedback control.  

Then we have the following theorem. 

Theorem. If there exists a constant ∗d such that the )( ∗dP is positive definite, then, by adding the 

adaptive feedback gain equation (3), the coupled system (2) will synchronize; that is, 

.2,,2,1),(0)( Nittei =∞→→ for any initial values ).,,2,1(),0()),0(),0(( Nidyx iii =  

FIG.2 shows the relation between the minimum eigenvalue )(min Pλ  of the matrix P and the 

value of ∗
1d when N=5 and 6. It can be seen from it that 0)(min >Pλ  for some values of ∗d .For N=5, 

2540.834)(min =Pλ  when 30002100 21 == ∗∗ dd ， .For N=6, 9135.829)(min =Pλ  when

20002200 21 == ∗∗ dd ， . Therefore, if ∗∗
21 dd ，  exists, for which the matrix P is positive definite, 

guaranteeing adaptive synchronization of the coupled system.  

         

(a). 30005 2 == ∗dN ，                           (b). 20006 2 == ∗dN ，  

FIG.2 the relation between the minimum eigenvalue )(min Pλ  of the matrix P and the value of ∗
1d . 

V. Numerical Simulations 
In this section, numerical simulations are carried out to observe the synchronization of the 

multi-coupled FHN neuronal systems. 

The parameters are chosen as ,1.0,1,10 === Abr ,129Hzf =  01.021 == kk .And the initial 

values are:

，，，，， 1)0()0(10)0()0(5)0()0(5.0)0()0(1.0)0()0( 2144332211 ========== ddyxyxyxyx  

for system (2)( N=4). FIG.3 shows time evolution curves of the synchronization errors of coupled 

system (2) (N=4). We switch on the coupling controller at time .50mst =  As shown in FIG. 3, 
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before the control is implemented, the individual neurons exhibit their own chaotic dynamical 

behaviors and are not synchronized. After the adaptive controller is applied, the errors converge to a 

small region around zero rapidly and then the synchronization is obtained.  

     
(a)                                  (b) 

FIG.3 Time evolution curves of the synchronization errors of coupled system (N=4). 

(a) 147435323211 xxexxexxexxe −=−=−=−= ，，，  

(b) 148436324212 yyeyyeyyeyye −=−=−=−= ，，，  

VI. Conclusions 
This paper investigates the synchronization of a general multi-coupled FHN neurons network 

with uncertain coupling coefficients. An adaptive feedback controller for such network is designed. 

The network will synchronize by adding only one adaptive feedback gain equation for any initial 

values of the system without exactly estimating the coupling coefficients of the chaotic systems, 

which is important to practical applications. Furthermore, the effectiveness of these synchronization 

criteria has been demonstrated by numerical simulations. 
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