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Abstract. With the rapid growth of data volume of the Internet and other platforms, the bandwidth 
needed for data transmission and reception is getting higher and higher, and the requirements for 
processing speed and sampling frequency of information acquisition are also improved. Based on 
the Shannon sampling theory, it is found that only when the sampling frequency of the signal is 
higher than or equal to twice the signal bandwidth, can higher-quality analog signal recovery effect 
be achieved. In order to efficiently deal with the problem of the fast reconstruction of the unknown 
sparsity of the compressed signal, a new method with wider adaptability and higher efficiency is 
proposed. Firstly, use isometric rules to obtain upper and lower bounds of the compressed output 
signal, and take the closest integer value as estimation value of sparse signal; secondly, by reducing 
the number of iterative projection support of observation vector to realize complexity reduction of 
calculation of signal reconstruction, and design evaluation probability system for signal 
reconstruction to achieve implementation of the validation of the proposed index scheme; finally, 
based on the experimental verification, the proposed method can obtain and achieve fast 
reconstruction of sparsity of unknown signal and can obtain higher success rate than backtracking 
scheme. 

Introduction 
Danoho, Candes and other experts found and interpreted the process of compressed sensing of 

information based on research [1-3]. The main idea of this paper is to reduce the computational 
complexity of the algorithm starting from the simplified reconstruction projection process by using 
the compressed sensing process. In order to solve the problems mentioned above, this paper designs 
a new method of signal reconstruction (OASP) which is more adaptive and efficient. In this method, 
the sparse prediction algorithm is used to achieve reconstruction of the information of unknown 
sparsity. At the same time, it can effectively avoid the redundant computation of the iterative 
support set projection of the observation vector in the reconstruction process to reduce the 
computational complexity of the reconfiguration strategy. Then, evaluation index design of the 
performance of reconstruction of information on the basis of in-depth study of the existing methods 
of measuring is performed to get access to a more scientific and comprehensive assessment. The 
experimental analysis shows that the sampling frequency standard of the process is much lower than 
the Nyquist standard, and the original signal reconstruction results obtained by this method have 
higher reliability. 

Strategy Description 
As previously mentioned, because the present reconstruction strategy only applies to 

reconstruction of signal with known sparsity, but not applicable to signal with unknown sparsity, 
this paper makes improvement on reconstruction strategy to combine sparsity fast estimation 
strategy for implementation of efficiency promotion of calculation process of sparsity and 
realization of unbiased sparsity estimation. In addition, in the proposed reconstruction strategy, 
projection process of observation vector iterative candidate set of backtracking strategy is improved 
to obtain sufficient convergence and avoid the support set projection calculation, so as to realize the 
simplification of reconstruction process. 
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(1) Sparsity estimation 
Here, the adopted estimation strategy is firstly described. The fact that the signal with unknown 

sparsity to be reconstructed meets isometric constraint conditions [6] is the premise for 
reconstruction. According to this property, in case the vector x satisfies the condition o

x K , if 
there is a matrix A that satisfies the condition of the formula: 
 2 2 2

2 2 2
(1 ) (1 )K Kx Ax x      (1) 

Then the matrix A satisfies the constraint conditions in case of parameters ( , )K  . In formula (1), 
2

x is the 2l -norm result of x  , in which K is the minimum condition available that satisfies the 
formula (1), that is, 0 1K  . Theorem 1 can be obtained using the above properties. 

Theorem 1: set the sparsity value of the signal to be reconstructed as k , for the parameters ( , )K  , 
the matrix A meets the constrained isometric characteristics, if the equation k K is established, then 
the following formula can be obtained: 
 02 22

1 1
1 1

Tk k

k k

y A y y 
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 
 
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In the formula (2), ( , )iA y  is the absolute value of the vector y and the matrix A of elements in i th 
column, 0 is the set of maximum values of the previous k sets of indexes, and 0

A is information sub 
matrix constructed in 0 th column in matrix A . 

Proof: 
Lemma 1: set the sparsity of the signal to be reconstructed as k , for the parameters ( , )K  , the 

matrix A meets the constrained isometric characteristics, if k K is established, then the following 
formula can be obtained: 
 02 2
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Lemma 2: if matrix A meets the constrained isometric characteristics as for parameters ( , )K  and 
meets 0 22

1
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 , then it can be concluded that k K . 

According to the inverse-negative proposition of lemma 2, the following inference can be 
obtained: 

Inference 1: if the matrix A satisfies RIP characteristics of parameter ( , )KK δ and satisfies the 

sparsity estimation characteristic of 0 22

1
1

T k
r

k

A y yδ
δ

+
≤

− , then it can be concluded that k K≤ . 

Theorem 1 can be approved by using inference 1 and lemma 1. 
2
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yδ
δ− used in theorem 1 are constant terms greater than zero, set the two items as 

minC and maxC and calculate the square of both sides of formula (2), then it can be obtained: 
 2 2 2

min max( , )i
i

C A y C
∈

≤ ≤∑  (4) 
Set , (1 )i iu A y i N= ≤ ≤ , arrange iu in descending order to obtain the new data set 1' ( , , , , )i NU u u u′ ′ ′=   . 

Set 2

1
( )

k

i
i

f k u
=

=∑ , then formula (3) is equivalent to: 
 2 2

min max( )C f k C≤ ≤  (5) 
In formula (4), the minimum k value can be used as the lower limit of sparsity K , and it can be 

expressed as minK , the maximum k value that makes formula (4) hold is: 
 min max0.5( ) 0.5k K K= + +    (6) 

The symbol    in formula (4) means rounding operation of that under the symbol. 
Compared with traditional methods [11-12], it is only needed to calculate the square sum of the 

internal elements of 'U , express respectively the first and the last element satisfying the formula (4) 
as minK and maxK  to avoid the redundant calculation. in related literatures [11-12], stop signal 
reconstruction if the sparsity value is in interval of the upper and lower limits, for it can lead to 
excessive error of sparsity estimation value, for example, when testing at the position of lower limit 
of sparsity but the real value is in the upper limit. This paper adopts min max0.5( ) 0.5k K K= + +   , which can 
effectively avoid above situation, and can obtain more accurate estimated value. 
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(2) Algorithm steps 
The implementation process of the proposed reconstruction strategy is shown in Figure 1. Under 

the premise of ensuring backtracking reconstruction strategy satisfies the convergence conditions, 
the reduction of projection calculation times of reconstruction strategy can efficiently reduce 
complexity of the strategy. Firstly, the K value is estimated by the estimation method, and then the 
iterative process of signal reconstruction is performed. For n times of signal reconstruction iterative 
process, firstly compute untreated margin 1nr −  and matrix A according to the column correlation, 
merge K  groups of indexes of strongest column correlation coefficient and nS -1 obtained in the 
last iteration process, and then get nC , then perform projection operation of y in nC  and set K  
groups of indexes of strongest column correlation coefficient as nS , and set nS  projection as non 
zero subentry nZs of nZ  of signal reconstruction iterative process; in order to achieve effective 
iterative margin determination, -

n nn S Sr y A Z= ⋅ , if the condition 1n nr r> − is satisfied, then stop signal 
iteration, if the above conditions are not satisfied, proceed to the next iteration, among which nAs is 
the sub matrix of the index column nS in the matrix A . The calculation process is shown in Figure 1. 

Sparsity 
estimation

Correlation 
maximization

Determining 
candidate set

Candidate 
set 

projection

Determining 
support set

Determining 
margin

Exit condition is 
satisfied

No

Output 
reconstruction 

signal

Yes

 
Fig.1. Method implementation steps 

(3) Theoretical analysis 
Theorem 2: suppose that the signal Nx R∈ , the true sparsity 3K M≤ , the observation values of the 

signal My x R= Φ ∈ , if Φ satisfies RIP characteristics of the parameters ( , )K  , and meets 0.206Kδ < , then 
the proposed algorithm can ensure y can achieve reconstruction of x sequence through limited 
iterative process, that is, reconstruction process convergence. 

Proof: the proof of that the reconstruction process is convergent can be performed by proving 
each convergence of reconstruction process will cause the energy of signal sequence of energy to 
gradually reduce, that is: 2 21|| || ,0 1l lT T T Tx C x C

− − −
≤ ⋅ < <C C . 

1) Simplification process of index definition projection process is l lT T T∆ = − , 
then 2 2 2| ( ) || | ( ) || || ||T Tp px xp p ε

∆
≤ ≤ , that is: 

 2 2 2| || || ( ) || || ||T T px xp ε
∆ ∆

≤ +  (7) 
If T T Tx x

∆ ∆
=



, then: 
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1
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K
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δ −−

+
≤

−
     (8) 

2) Because: 1
1 1T T

l
l l rr x

∪
−

− −= Φ  and property of RIP is: 

 1
1 21, 2 1

l
l l

S K
lp T T Tx x

S

δ −
−

+
− −

≤
−

   (9) 

For the simplification T∆ of the projection process, it can be obtained according to definition of 
T∆ that: 
 11 2 1 2 1 2| || || || || ||l

T T T
l T l lT T T

r r r−∆ − − −−
Φ ≥ Φ ≥ Φ  (10) 

It can be seen that simplifying the intersection part of T∆ and 1lT T −− , the formula is still 
established: 
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T T T

l lT T T T T T
rl r r−∆ − −− − −

Φ − ≥ Φ = Φ


 (11) 
Thus each convergence in the rebuilding process will cause the energy of signal sequence to 

gradually reduce, that is, the equation 2 21|| || ,0 1l lT T T Tx C x C
− − −

≤ ⋅ < <C C  is established. 

Reconstruction Evaluation Index 
In the sparse signal reconstruction operation, there will be the reconstruction errors of location 

reconstruction error and amplitude reconstruction error, the experimental data is shown in Figure 2, 
figure 2a is the original sparse signal without being processed, the signal length is 10 and the 
sparsity is 4; figure 2b is sparse signal with amplitude reconstruction error, figure 2c is the sprsity 
signal with location reconstruction error. The probability of the non - zero amplitude of the signal is 
reconstructed, which is defined as I, and set the probability of sparse reconstruction asⅡ . 
If∣Reconstructed signal-original signal∣ ≤ 10-8is satisfied, the reconstruction process is 
successful. The output of the signal reconstruction process is shown in figure 2b~2c, and the 
corresponding values of the reconstruction probability are 0.75 and 0.9 respectively; In the 
traditional evaluation process, Ⅰis mainly taken as evaluation index to evaluate reconstruction 
performance of the proposed method. The reconstruction probabilityⅠcan not reflect the difference 
between the two kinds of error reconstruction, and the simple using of reconstruction probabilityⅠ
can not judge the whole reconstruction probability of the sparse signal. 

 
(a) Raw signal 

 
(b) Amplitude reconstruction error 

 
(c) Location reconstruction error 
Fig.2. Signal reconstruction error 

For the reconstruction process, the best effect is to achieve unbiased estimation of the entire 
signal sparse reconstruction, rather than simply perform the reconstruction process for the non-zero 
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signal elements. In this paper, the performance of signal construction of the proposed method is 
analyzed by using the sparse reconstruction probability II as the evaluation index in the following 
simulation. 

Experimental Analysis 
(1) Sparsity evaluation 
Determination is drawn based on accuracy estimation of sparsity by simulation, in order to 

simplify the description, here it is referred to as OASP. In the process of experiments, respectively 
set the length of the signal N as 256 and sampling frequency M as 128, the observation matrix used 
is M N× dimension random Gauss matrix, comparison of the experimental data used is mean of 1000 
experiment stimulation statistical data. In Figure 3, when K =36, by comparing the 
estimated K values of each kδ value, we can see that in the case that kδ  =0.15, the estimated value of 
the strategy is smaller than the actual deviation value, and is more stable. 

 

 
Fig.3. Experimental comparison of sparsity 

Table 1 compares the simulation time of the two strategies. The experimental results are 
comparison simulation time of the two different strategies for 1000 times, which is the statistical 
data of 1000 Monte Carlo experiments. In the experiment, set N = 512, M = 256, compare the 
computation time for achieving signal reconstruction under the same constraints at the end of the 
experiment. Based on the data in the table, we can see that compared with the reconstruction 
strategies of OASP and SP , the computation time of the previous strategy is less than that 
of SP reconstruction strategy, and with the increase of K value, the decrease of computational time 
of OASP strategy is more obvious. 

Table 1 Comparison of computation time 

K  
Computation time/s 

K  
Computation time/s 

SP OASP SP OASP 
8 0.267 0.218 40 40 3.472 
16 0.771 0.606 48 48 5.029 
24 1.574 1.321 56 56 6.909 
32 2.651 2.129 64 64 9.687 

Figure 4 shows the number of iterations of the same set of termination conditions of the two 
strategies, set in the simulation process that N = 256, M = 128, the contrast data figure 4 shows is 
mean of 500 Monte Carlo experimental statistical data. Based on this figure, we can see that when 
the K value is small, the number of iterations required by the contrast strategy in the same 
termination condition is not large, and its value is close to log( )K . With the increasing of K value, the 
number of iteration steps of OASP strategy increases, but the SP reconstruction strategy is contrary. 
With the increasing of K value, the saving time of OASP strategy is becoming more and more obvious. 
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Fig.4. Comparison of iteration times 

Figure 5 shows the comparison of the number of iterations under different reconstruction 
probabilityⅡ . In simulation comparison, set N = 256, M = 128, as for ∣Reconstructed 
signal-original signal∣≤10-12, it indicates that the signal reconstruction process is successful, 
comparison data as shown is Monte Carlo mean of 1000 statistical data. At the same time, several 
strategies such as (SAMP Sparsity Adaptive Matching )Pursuit  [15] are adopted for comparison. The results 
show that the performance of the three strategies of ROMP , OMP , SAMP decreases gradually under the 
situation that the sparsity is less than 45. At the same time, the SP strategy has better performance of 
signal reconstruction, but when K is increased to 56, the reconstruction performance of the strategy 
is beginning to decline; especially when the K value of the OASP strategy reaches 60, its performance 
begins to decline. This is because for each strategy, there is a sparse threshold, when the threshold is 
exceeded, the ability of the algorithm declines rapidly, resulting in the rapidly reduction of 
performance of the algorithm, which is as shown in figure 5. The greater the threshold value, the 
stronger the reliability of the algorithm, therefore, based on the above data, we can see that the 
proposed method has the most prominent advantages in the process of the reconstruction of the 
sparse signal, and its computational efficiency is the highest. Although the proposed method has a 
significant advantage, but with the increase of the K value, the reconstruction probabilityⅡis greatly 
reduced, but the computation time of the SAMP strategy is much slower. 

 
Fig.5. Comparison of reconstruction probabilityⅡ of different strategies 

Conclusion 
In order to efficiently solve the problem of fast reconstruction of unknown sparsity of 

compressed signal, this paper proposes a new method of signal reconstruction, which is more 
adaptive and efficient. The proposed method is easy to implement, and the adopted fast estimation 
process can be used to efficiently deal with the unknown signal; at the same time, the performance 
of the proposed strategy is compared with the signal probability evaluation index for verification. 
The simulation results show that the performance of the proposed method will be significantly 
reduced if the sparsity is too large, the solution of which is the focus of future research. 
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