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Abstract.In this paper,we study local bifurcation fromthe eigenvalue 9λ λ= with multiplicity two of 
the Laplacian operator for the steady-state solutions of a class of reaction-diffusion equation with 
Robin boundary conditions on the two-dimensional rectangular area[ ] [ ]0,2 0, .π π×  

Introduction 
In bifurcation theory,a natural problem is whether accurate descriptions parallel to that in 

Crandall-Rabinowitz[1][2]theorem are still possible at eigenvalueswith multiplicity greater than 
one,at least in special cases[3][5].Concerning eigenvalues of higher multiplicity, [4] are known of 
potential operators where bifurcation takes place.Local bifurcation from the branch of trivial 
solutions in an equation of the form ( ) ( ), , 0F u u u f x uλ λ= ∆ + + = where 1, nR Rλ∈ Ω ⊂ is a 

bounded domain and ( ) ( ),f x u uο= as 0u → has been widely treated in the literature. 

Preliminaries 
In this paper,we restrict ourselves in what follows to a special case of the reaction-diffusion 

equation 
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where [ ) 10, ,t Rλ∈ +∞ ∈  and f satisfies the two following conditions:(i) ( )3 1 ;f C R∈ Ω× (ii)

( ) ( ) ( ) ( ),0 ,0 ,0 0, ,0 0.u uu uuuf x f x f x f x k= = = = ≠  
It is easy to find that the question of steady state bifurcation from the double eigenvalue in(1) can 

be converted into the bifurcation problem of the following semi-linear elliptic equation: 
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(2) 

Next, we carry on the Taylor expansion about f at the point of 0u = and we can get that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 3 3 3 31 1, ,0 ,0 ,0 ,0 1
2! 3! 6 6u uu uuu

k kf x u f x f x u f x u f x u u u u uο ο ο = + + + + = + = + 
 
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Thus if 0k > ,we can consider the case ( ) ( )( )3, 1 ,f x u u x uθ= + where ( )1 1C Rθ ∈ Ω× and

( ),0 0xθ = .Of course,if 0k < ,accordingly we consider ( ) ( )( )3, 1 ,f x u u x uθ= − + . 

The Main Results 

Theorem 1Let [ ] [ ] 20, 2 0, Rπ πΩ = × ⊂ .Then there exist an 0ε > and a neighbourhoodU of ( )9 ,0λ

in ( )1R C× Ω such that the set of all steady-state bifurcation solutions of(1)inU can be described as 

the union of four 1C curves: ( ) ( ) ( )( ), , ,     =1, ,4,i is s u s iε ε λ∈ −   such that 
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where 1 2 3 40, / 4, / 2, 3 / 4,α α π α π α π= = = = and  

1 3 2 49 /16 21/ 32,σ σ ,σ σ= = − = = − for 0k >  

1 3 2 49 /16 21/ 32,σ σ ,σ σ= = = = for 0.k <  
Proof.On the basis of calculation,we label M as the vector space of all eigenfunctions

sin cos 2A x y= and sin 2 cosB x y= associated to the double eigenvalue 9 2,2 1,4 5λ λ λ= = = and 

denote ( ){ }: 0, .M u C u Mφ φ⊥

Ω
= ∈ Ω = ∀ ∈∫ After that we introduce the normalizedeigenfunction

( ) [ ), cos sin cos 2 sin sin 2 cos cos sin , 0, 2x y x y x y A Bαφ α α α α α π= + = + ∈ ,which is a parametric 

representation of all eigenfunctions φ with 2 / 2.
L

φ π= Alongside with αφ  weintroduce an 

orthogonal eigenfunction defined by ( ), sin sin cos 2 cos sin 2 cos .x y x y x yαy α α= − Notice that 

/2α π αφ ψ− = and .Dα α αφ ψ= − Let ( ),n nuλ be a sequence of solutions to (2) such that 9nλ λ→ and

0nu →  in ( )C Ω .We make the normalization: / .n n nu u u
∞

= Then nu verifies the equation 

( )( )
( ) ( ) [ ]

( ) ( ) [ ]

2 1 , 0

0, 2 , 0 0,

,0 , 0 0,2

n n n n n

n n

n n

u u u u x u in

u y u y y
u ux x x
n n

λ θ

π π

π π


∆ + ± + = Ω


= = ∀ ∈
∂ ∂ = = ∀ ∈
∂ ∂

  

 

 

(3) 

The first formula of (3)can be transformed into ( ) ( )( )1 2 1 , ,n n n nu x u u uλ θ−  −∆ ± + =    Thus that 

(3)is equivalent to a fixed point equation for a self-sequential compact operator in ( ).C Ω We all 
know that a compact operator can map a bounded set into a compact set,and taking into account that

1nu
∞
= ,passing to a subsequence still denoted by nu ,we have that 0nu u→ in ( )C Ω with 0 1u

∞
=

and 0u satisfies 
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It follows that 0u M∈ and for some [ )0,2α π∈ we can assume 0u c αφ= with 
1c αφ
−= .Writing n n nu φ ψ= + with ,n nM Mφ ψ ⊥∈ ∈ (so that , 0n nc αφ φ ψ→ → );again writing 
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n nt u
∞

= and simplifying the first formula of(3),we arrive that 

( ) ( ) ( )( ) ( ) ( )( )( )32
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Since ,n Mφ ∈ we get that 9 0n nφ λ φ∆ + = .Then the above mathematical expression can be 
converted to 
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  Similarly,multiplying (4)by αψ , integrating by parts and passing to the 

limit we get that
4

3
2

.α
α α α α

α

φ
φ ψ φ ψ

φ
Ω

Ω Ω
Ω

=∫
∫ ∫∫

We have the left hand equals 0 from
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that the bifurcation is only possible from four values of α ,namely 0, / 4, / 2,3 / 4α π π π= .Notice 
that there are other values of α .Since π α αφ φ+ = − ,we can find that the bifurcation occurs only at 

0, / 4, / 2,3 / 4.α π π π= Writing 
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9n s sλ λ s ο= + + .Through calculation we can get 1 3 2 49 /16 21/ 32σ σ ,σ σ= = − = = − for 0.k >

and 1 3 2 49 /16 21/ 32σ σ ,σ σ= = = = for 0.k < Besides if followsfrom(4)that ( )2
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As a consequence of this analysis,any solution ( ),n nuλ  near the bifurcation point ( )9 ,0λ has the 

form
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Nowwe turn to the actual construction of the bifurcated branches.Let 

0α be fixed as one of the four values 0, / 4, / 2,3 / 4α π π π= given above.For s small we want to 

solve it:
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Denoting by K

the inverse of∆which is a compact and linear operator from ( )C Ω  into itself. 

For , ,α σψ  in a small neighbourhood of 0 0 0, ,α σψ  respectively,the above problem is equivalent to

( ), , , 0H sα s ψ = where
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( ) ( ) ( )( )( )32 2 3
9, , , 1 ,H s K s s x s sα α αα s ψψ  λψ sφ sψ φ ψ θ φ ψ= + + + ± + + + and 0 Mψ ⊥∈ isthe 

unique solution of this equation 
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Let us apply the implicit function theorem in our setting.First we must notice that H is a 1C  
function ofits arguments in a neighbourhood Q of ( )0 0 0, , ,0α σψ  in 1 1 1.R R M R⊥× × × Also,
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For some ( ) 1 1, , ,R R Mα σψ  ⊥∈ × ×  we assume that ( ) ( ) ( )0 0 0, , , , ,0 , , 0.D Hα σψ  α σψ  α σψ  =   This 
means that ψ solve the following problem 
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Multiplying by 
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φ ,integrating inΩ and performing an integration by parts,we arrive at 0σ =
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always nonzero.Thus 0α = and (5)leads to 0.ψ = Tosummarize, ( ) ( ) ( )0 0 0, , , , ,0 , ,D Hα σψ  α σψ  α σψ   is 
one-to-one and hence an isomorphism since it can be viewed as a compact perturbation of the 
identity. 0,ε∀ > the implicit function theorem applies to three 1C functions ( ) 1: , ,Rα ε ε− →

( ) ( )1: , , : ,R Mσ ε ε ψ ε ε ⊥− → − → such that ( ) 00 ,α α= ( ) 00 ,σσ = ( ) 00ψψ = and the set of 

solutions of ( ), , , 0H sα s ψ = near the point ( )0 0 0, , ,0α σψ  can be expressed as ( ) ( ) ( )( ), , ,s s s sα s ψ

This conclusion together with the form of ( ),n nuλ gives in particular a unique curve of solutions 

to(2)such that ( )
0

~u s s αφ as 0.s → Since 0α  can be taken as any of the four values
0, / 4, / 2,3 / 4.π π π ,we have exactly four branches of solutions near the bifurcation point
( )9 ,0λ .The proof of the theorem is thus complete and the bifurcation graphic looks like this: 
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(i)for 0k < (ii)for 0k >  
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Conclusion 

Based on the analysis,we should mention that the nonlinearity ( )( )3 1 ,u x uθ± + can be replaced by

( )( )2 1 1 , ,mu x u m Nθ+ +± + ∈ , with no change basically in the proofs above together with 

mathematical induction. The next step of our work is that case ( ) ( )( )2, 1 ,f x u u x uθ= ± +  and the 
corresponding local and steady state bifurcation problem of (1). 
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