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Abstract: This paper deals with the Dirichlet problem of a superlinear biharmonic equation with

Hardy-Sobolev potential, where the nonlinearity is odd. By Fountain theorem with Cerami condition

and Sobolev-Hardy inequality, we get the existence of nontrivial solutions for the problem.

1 Introduction

In this paper, we will consider the existence of multiple solutions of biharmonic equation with Dirich-

let boundary Problem:  42u = λ u
|x|s + f (x, u), in Ω,

u = ∂u
∂ν = 0, on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN (N > 4) and 0 ∈ Ω, 42 denotes the biharmonic operator,

λ > 0 is a parameter, 1 ≤ s ≤ 4, u
|x|s is called Hardy-Sobolev potential.

In recent years, the problems with singularity have been a hot topic. But because of singularity, the

problems are also difficult. In problem (1.1), if f (x, u) = f (x) or f (x, u) = |u|p−2u, 2 < p ≤ 2N
N−4 when

0 ≤ s ≤ 2, Kang and Deng [5] studied the existence of the solutions of the problem (1.1) by using

variational methods and Sobolev-Hardy inequalities. If f (x, u) = |u|
N+4
N−4 u in problem (1.1), by means of

the concentrate compactness principle [6] and Mountain Pass theorem, Xiong and Shen [11] got the two

existence results for the problem (1.1). Meanwhile, the authors proved, by Pohozaev identity for sigular

solution, there is no nontrivial solution for equations with critical exponent and critical potential [2,3,8].

If f (x, u) = f (x) +
|u|2
∗(α)−2u
|x|α , 2∗(α) =

2(N−α)
N−4 , 0 ≤ α < 4 and s = 4 in problem (1.1), Hu and Song [4] got

the existence of at least one solution under some certain condition by employing variational method and

Sobolev inequality.

In this paper, our main interests are the problem (1.1) suggested by Kang and Deng [5], Liu and

Li [7], Wang and Shen [9] and Xiong and Shen [11]. Our main methods follow that of Liu and Li [7] and

Wang and Shen [9].
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Throughout this paper, we denote the norms of u in H2
0(Ω) and Lp(Ω) by ‖u‖ = (

∫
Ω
|∆u|2dx)1/2 and

|u|p = (
∫
Ω
|∆u|pdx)1/p, respectively. Here, H2

0(Ω) is the Sobolev space W2,2
0 (Ω) with respect the norm

‖u‖. ⇀ for weak convergence and→ for strong convergence.

u ∈ H2
0(Ω) is said to be a weak solution of the problem (1.1) if u satisfies∫

Ω

∆u∆ϕdx − λ
∫

Ω

u
|x|s

ϕdx −
∫

Ω

f (x, u)ϕdx = 0,∀ϕ ∈ H2
0(Ω).

It is well known that the notrivial solutions of the problem (1.1) are equivalent to the nonzero critical

points of the energy functional

Iλ(u) =
1
2

∫
Ω

|∆u|2dx −
λ

2

∫
Ω

u2

|x|s
dx −

∫
Ω

F(x, u)dx, (1.2)

for u ∈ H2
0(Ω), where F(x, u) =

∫ u
0 f (x, s)ds. So the Frechet dirivative I′(u) of the energy functional

(1.2) at u is

〈I′(u), ϕ〉 =

∫
Ω

∆u∆ϕdx − λ
∫

Ω

u
|x|s

ϕdx −
∫

Ω

f (x, u)ϕdx,∀ϕ ∈ H2
0(Ω).

Let Φ(t, s) = 1
2 tα f (x, s)s − F(x, ts), α ∈ (0, 2) is a constant. Assume that function f (x, s) satisfies

( f1) f (x, s) ∈ C(Ω × R,R), f (x, 0) = 0 for any x ∈ Ω;

( f2) there exists some constants a, b > 0 such that | f (x, s)| ≤ a + b|s|q−1 for (x, s) ∈ Ω × R, where

2 < q < 2N
N−4 ;

( f3) lim|s|→∞
f (x,s)s
|s|2 = ∞ uniformly x ∈ Ω;

( f4) there exist µ > 0 and δ > 0 such that Φ(t, s) ≤ µΦ(1, s), for any x ∈ Ω, |s| ≥ δ and t ∈ (0, 1];

( f5) f (x,−s) = − f (x, s), ∀(x, s) ∈ Ω × R;

Assume 0 ≤ s ≤ 4 , then there exists a constant C > 0 such that( ∫
Ω

|u|q

|x|s
dx

) 1
q
≤ C

( ∫
Ω

|∆u|2dx
) 1

2 ,∀u ∈ H2
0(Ω).

We use λs(Ω) to denote the best Sobolev-Hardy constant, that is, the largest constant C satisfying the

above inequality for all u ∈ H2
0(Ω), i.e.,

λs(Ω) = inf
u∈H2

0 (Ω),|u|,0

∫
Ω
|∆uk|

2dx∫
Ω

|u|2
|x|s dx

The main result of this paper is stated as follows.

Theorem 1.1 Let ( f1)-( f5) hold. If λ < λs(Ω), then problem (1.1) has infinitely many nontrivial solutions

{uk} in H2
0(Ω) which satisfies that

1
2

∫
Ω

|∆uk|
2dx −

λ

2

∫
Ω

u2
k

|x|s
dx −

∫
Ω

F(x, uk)dx→ +∞ as k → +∞.
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2 Preliminaries

Throughout this paper, we let E be a real Banach space endowed with the norm ‖ · ‖ and E∗ the

topological dual of E. For all x ∈ E and x∗ ∈ E∗, the value of f at x is denoted by 〈x, f 〉 and is called the

duality pairing. Then, we give the main definitions and lemmas in this section.

Definition 2.1 [10] Let E be a real Banach space, a functional I ∈ C1(E,R) is said to satisfy the Palais-

Smale condition ( (PS)-condition, for short) if there exists a constant c ∈ R, any sequence {un} ⊂ E

satisfying

I(un)→ c, I′(un)→ 0, as n→ ∞, (2.1)

possesses a convergent subsequence.

Definition 2.2 [7, 9] A functional I ∈ C1(E,R), where E be a real Banach space, is said to satisfy the

Cerami-condition ( (C)-condition, for short) in (c1, c2) (−∞ ≤ c1 < c2 ≤ +∞) if for any c ∈ (c1, c2),

(i) any bounded sequence {un} ⊂ E satisfying (2.1) possesses a convergent subsequence, and

(ii) there exist δ,M, ε > 0 such that ‖I′(un)‖E∗‖un‖ ≥ ε for any u ∈ I−1[c − δ, c + δ] with ‖un‖ ≥ M.

It is obvious that (C)-condition is slightly weaker than (PS)-condition while the most important im-

plications of (PS)-condition are retained.

Let E is a separable Banach space, and there exist {en}n∈N ⊂ E and {φn}n∈N ⊂ E∗ such that

(i) 〈φn, em〉 = δm
n , where δm

n = 1 if n = m, δm
n = 0 if n , m, and

(ii) span{en, n ∈ N} = E, spanw∗{φn, n ∈ N} = E∗.

Let E j = span{e j}, then E = ⊕ j≥1E j. Set Yk = ⊕k
j=1E j, Zk = ⊕ j≥kE j. Thus, we have the following

lemma:

Lemma 2.1 [1, 7, 10](Fountain theorem) Let E be a real Banach space and I ∈ C1(E,R) with I even,

that is, I(−u) = I(u). Suppose I(0) = 0 and I satisfies (C)-condition, and for any k ∈ N, there exits

ρk > rk > 0 such that

(i) bk = inf
u∈Zk ,‖u‖=rk

I(u)→ +∞, as k → +∞, and

(ii) ak = max
u∈Yk ,‖u‖=ρk

I(u) ≤ 0,

then I possesses an unbounded sequence of critical values.

Lemma 2.2 [12] Assume 1 ≤ q ≤ 2∗(s) =
2(N−s)

N−4 , then
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(1) (Sobolev-Hardy inequality) for any u ∈ H2
0(Ω), there exists a constant C such that( ∫

Ω

|u|q

|x|s
dx

) 1
q
≤ C

( ∫
Ω

|∆u|2dx
) 1

2 ;

(2) the mapping u→ u
xs/q from H2

0(Ω) into Lq(Ω) is compact provided 1 ≤ q ≤ 2∗(s).

Lemma 2.3 Assume ( f1)-( f4) hold, and suppose that there exists {uk} ⊂ H2
0(Ω) and {tk} ⊂ R, tk > 0 such

that 〈I′(uk), uk〉 → 0 and tk → 0 as k → ∞. Let wk = tkuk, then I(wk) ≤ µI(uk) + o(1) as k → ∞.

Proof From the assumption of this lemma, it is easy to known that t2
k〈I
′(uk), uk〉 → 0 as k → ∞,

and consequently, we have

‖wk‖
2 = λ

∫
Ω

t2
k

u2
k

|x|s
dx −

∫
Ω

t2
k f (x, uk)ukdx + o(1).

Hence, from ( f4), we have

I(wk) =
1
2

∫
Ω

t2
k f (x, uk)ukdx −

∫
Ω

F(x, uk)dx + o(1) ≤ µ
∫

Ω

Φ(x, uk)dx + o(1) = µI(uk) + o(1).

Lemma 2.4 Assume that ( f1)-( f4) hold, if λ < λs(Ω), then functional I satisfies (C)-condition.

Proof By Sobolev embedding theorem, we known that H2
0(Ω) → Lq(Ω), 1 ≤ q < 2∗ = 2N

N−4 is

compact. Meanwhile, from Lemma 2.2, it is easy to show that I satisfies (C)-condition (i).

Next, we prove that I satisfies (C)-condition (ii). Assume that there exists a constant c ∈ R and for

any sequence {uk} ⊂ E such that

I(uk)→ c, ‖uk‖ → ∞, ‖I′(uk)‖E∗‖uk‖ → 0, as k → ∞. (2.2)

Obviously, from the assumptions above, we obtain that 〈I′(un), un〉 → 0. For any constant K > 0, set

tk =

√
2K
‖uk‖

,wk = tkuk =

√
2Kuk

‖uk‖
, (2.3)

It is from (2.3) that {wk} is bounded in H2
0(Ω), and hence there exists w ∈ H2

0(Ω) such that wk ⇀ w in

H2
0(Ω); wk → w in Lq(Ω), 1 ≤ q < 2∗; wk ⇀ w, a.e. x ∈ Ω.

We will show the contradiction for the following two cases:

Case a) Suppose w ≡ 0, then from wk ⇀ w, a.e. x ∈ Ω, we have∫
Ω

F(x,wk)dx→ 0, k → ∞.

Thus, by Sobolev-Hardy inequality, we have

I(wk) ≥
1
2
‖wk‖

2 −
λ

2

∫
Ω

|wk|
2

|x|s
dx −C ≥

σ

2
‖wk‖

2 −C.

where σ =
λs(Ω)−λ
λs(Ω) .
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By Lemma 2.3, we have

‖wk‖
2 ≤

2
σ

I(wk) + C ≤
2µ
σ

I(wk) + C ≤ C0. (2.4)

Let K = C0 in (2.3), then ‖wk‖
2 = 2C0, this is a contrary to (2.4).

Case b) Suppose w . 0, then by (2.2), we have∫
Ω

|∆uk|
2dx − λ

∫
Ω

|uk|
2

|x|s
dx −

∫
Ω

f (x, uk)ukdx = 〈I′(uk), uk〉 = o(1),∀ϕ ∈ H2
0(Ω).

Hence,

‖uk‖
2 =

∫
Ω

|∆uk|
2dx ≥

∫
Ω

|∆uk|
2dx − λ

∫
Ω

|uk|
2

|x|s
dx =

∫
Ω

f (x, uk)ukdx + o(1).

Let Ω0 = {x ∈ Ω|w(x) = 0}, then |Ω\Ω0| > 0, and consequently from the inequality above, we have

1 ≥
∫

Ω0

f (x, uk)
uk

2K|uk|
2 |wk|

2dx +

∫
Ω\Ω0

f (x, uk)
uk

2K|uk|
2 |wk|

2dx + o(1). (2.5)

Meanwhile, for any x ∈ Ω\Ω0, we have |uk|(x)→ +∞. Hence, by ( f3), we get

f (x, uk)
uk

2K|uk|
2 |wk|

2 → +∞, k → +∞.

From |Ω\Ω0| > 0 and by Fatou Lemma, we have∫
Ω0

f (x, uk)
uk

2K|uk|
2 |wk|

2dx→ +∞, k → +∞. (2.6)

On the other hand, by ( f3), we know that there exists M > −∞ such that f (x,s)
s ≥ M,∀(x, s) ∈ Ω×R. And

we also note that
∫
Ω0
|wk(x)2dx→ 0 as k → +∞. Furthermore, we can find Λ > −∞ such that∫

Ω0

f (x, uk)
uk

2K|uk|
2 |wk|

2dx ≥
M
2K

∫
Ω0

|wk|
2dx > Λ > −∞. (2.7)

Therefore, from (2.5)-(2.7), we deduce a contradiction.

Thus, we obtain that functional I satisfies (C)-condition.

Lemma 2.5 If α ∈ [1, 2∗(s)), Then βk := sup{|u|α : u ∈ Zk, ‖u‖ = 1} → 0 (k → +∞).

Proof It is clear that 0 < βk+1 ≤ βk, so that βk → β ≥ 0 as k → +∞. For every k ≥ 0, there

exists uk ∈ Zk such that ‖uk‖ = 1 and |uk|α > βk/2. By definition of Zk, uk ⇀ 0 in H2
0(Ω). The Sobolev

imbedding theorem implies that uk → 0 in Lp(Ω). Thus we have proved that β = 0.

3 Proof of Theorem 1.1

The main results of this paper are stated as follows.

Proof of Theorem 1.1 Firstly, by ( f5), we obtain that I(−u) = I(u) for any u ∈ H2
0(Ω), and then it is

from Lemma 2.4 that I satisfies (C)-condition.
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Next, it is from ( f2) that there exists C > 0 such that |F(x, s)| ≤ C(1 + |s|q). Let βk := sup{|u|q : u ∈

Zk, ‖u‖ = 1}, k = 1, 2, · · · , then, by Lemma 2.5, βk → 0 as k → +∞. Set rk =
(

4C
σ β

q
k

) 1
2−q . If for u ∈ Zk

such that ‖u‖ = rk, then we have

I(u) ≥
σ

2
‖u‖2 −Cβq

k‖u‖
q −C|Ω| =

σ

2
r2

k −Cβq
krq

k −C|Ω| =
σ

4

(4C
σ

) 2
2−q β

2q/(2−q)
k −C|Ω|,

Note that βk → 0 and q > 2, from the above inequality, we have

bk = inf
u∈Zk ,‖u‖=rk

I(u)→ +∞, as k → +∞.

Finally, we show that ak = max
u∈Yk ,‖u‖=ρk

I(u) ≤ 0. In fact, we definite the norm ‖u‖2λ,2 =
∫
Ω

(
|∆u|2 −

λ |u|
2

|x|s
)
dx. Since on the finite dimensional space dim Yk all norms are equivalent, we obtain that ‖u‖2 ⇔

‖u‖2λ,2. Hence, there exits Bk,Ck > 0 such that for any u ∈ Yk,

1
2

∫
Ω

(|∆u|2 − λ
|u|2

|x|s
)
dx =

1
2
‖u‖2λ,2 ≤ Ck|u|22 = Ck

∫
Ω

|u|2dx, (3.1)

‖u‖2 ≤ Bk|u|22. (3.2)

By ( f2), there exits Rk > 0 such that F(x, s) ≥ 2Ck|s|2 as |s| > Rk. On the other hand, let Mk =

max{0, inf
x∈Ω,|s|≤Rk

F(x, s)} if |s| ≤ Rk, then for any (x, s) ∈ Ω × R, we have

F(x, s) ≥ 2Ck|s|2 − Mk. (3.3)

By (3.1)-(3.3), for any u ∈ Yk, we have

I(u) =
1
2
‖u‖2λ,2 −

∫
Ω

F(x, u)dx ≤ −Ck|u|22 + Mk|Ω| ≤ −
Ck

Bk
‖u‖2 + Mk|Ω|.

It is easy to see that there exits sufficiently large ρk > 0 such that ak = max
u∈Yk ,‖u‖=ρk

I(u) ≤ 0.

Therefore, by Lemma 2.1, functional I has an unbounded sequence of critical values.

4 Acknowledgements

In this paper, the research was supported by Science and Technology Research Project of Jiangxi

Provincial Department of Education (No. GJJ151250), Startup Foundation for Doctors of Nanchang

Normal University (No. 2015027), Nature Science Foundation of China (No. 11661057).

References

[1] Bartsch T. Infinity many solutions of symmetric Dirichlet problem[J]. Nonlinear Analysis: Theory,

Mathematics and Applications, 1993, 20(10): 1205–1216.

Advances in Engineering Research, volume 123

1683



[2] Edmunds DE, Fortunato D. Jannelli E. Critical exponents, critical dimensions and te biharmonic

operator[J]. Archive for Rational Mechanics and Analysis, 1990, 112: 269–289.

[3] Ghoussoub N, Yuan C. Multiple solutions for quasilinear PDEs involving the critical Sobolev and

Hardy exponents[J]. Transanctions of the American Mathematical Society, 2000, 352: 5703–5743.

[4] Hu AL, Song AL. Existence of solution for a singular biharmonic equation involving critical expo-

nent (Chinese)[J]. Journal of Huazhong Normal University (Natural Science Edition), 2011, 45(2):

175–179.

[5] Kang DS, Deng YB. Sobolev-Hardy inequalities and some critical biharmonic problems (Chi-

nese)[J]. Acta Mathematica Sinica, 2003, 23A(1): 106–114.

[6] Lions PL. The concentration-compactness principle in the calculas of varations, The limit case, part
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