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Abstract. The problem of scheduling multiprocessor tasks in a multi-machine environment is 
considered. Each machine contains a number of identical processors. Each task requires a number of 
processors on a single machine for its processing. The objective is to minimize the overall task 
completion time, i.e. the makespan. The general problem has been known to be strongly NP-hard. A 
linear time optimal algorithm is presented for a special case of the problem where all the tasks have 
unit processing times and each task requires one or k (k is part of the input) processors. The small 
computational effort of the algorithm is valuable in some practical applications. 

Introduction 

Multiprocessor task scheduling problem is an important issue in a distributed computing 
environment [1]. The problem can be formally defined as follows. There are n  independent 
multiprocessor tasks 1 2, , , nT T T  which are to be processed on m  machines 1 2, , , mM M M . 
Machine iM   ( 1, 2, ,i m=   ) consists of iρ   identical processors. All tasks are available at time 
zero. Task jT  ( 1, 2, ,j n=   ) requires jδ  processors on a single machine for its processing and 
its processing time is equal to jt .  The objective is to find a feasible schedule so as to minimize 
the overall task completion time, i.e. the makespan.  

Multiprocessor task scheduling is an extension of scheduling tasks on uniprocessor machines. 
In the latter problem, each task jT  must be processed on a single uniprocessor machine without 
preemption. It is NP-hard even if there are only two machines [2], and strongly NP-hard for an 
arbitrary number of machines [3]. The former problem is therefore strongly NP-hard, too.  

Blazewicz et al. [4] studied the problem of scheduling multiprocessor tasks in a single 
machine environment for minimizing makespan. They presented a linear time algorithm for a 
special case where all the tasks have unit processing times and each task requires one or k  ( k  is 
part of the input) processors. They also presented a linear time algorithm for scheduling tasks 
with unit processing times requiring an arbitrary number of processors between 1 and k   at a time 
where k  is a fixed integer. Drozdowski [5] gave a detailed review on the problems of scheduling 
multiprocessor tasks in a single machine environment for optimizing various objective functions. 
Pascual et al. [6] and Rzadca [7] studied the problem of scheduling multiprocessor tasks in a 
multi-machine environment for minimizing makespan where all the machines have the same 
number of processors. Pascual et al. [6] proposed a 4-approximation algorithm and Rzadca [7] 
proposed a 3-approximation algorithm. Later, the problem of scheduling multiprocessor tasks in 
a multi-machine environment for minimizing makespan was studied in [8-10], and three 
3-approximation algorithms were obtained. Lin and Liaw [11] proposed a 2.5-approximation 
algorithm for the problem of scheduling multiprocessor tasks in a multi-machine environment for 

minimizing makespan, under the assumption that 
2
ρδ  ≤   

, where  max j jδ δ=  and min i iρ ρ= . 
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In this paper, we study the problem of scheduling multiprocessor tasks in a multi-machine 
environment for minimizing makespan, allowing the machines have unequal number of 
processors. We present a linear time optimal algorithm for a special case of the problem where all 
the tasks have unit processing times and each task requires one or k  ( k  is part of the input) 
processors on a single machine. The result generalizes the first algorithm presented in [4] for the 
single machine case. 

The remainder of this paper is organized as follows. In Section 2, we present the algorithm. In 
Section 3, we prove the correctness of the algorithm. We conclude this paper in Section 4.  

The Algorithm 

For the purpose of easier descriptions, we assume a machine indexing for machines 1 2, , , mM M M  
such that 1i iρ ρ− ≤  holds and introduce 0 0ρ = , 1, 2, ,i m=  . Let 1n  denote the number of the 
tasks requiring one processor at a time. Similarly, let kn  denote the number of the tasks requiring 
k   ( k  is not fixed) processors on a single machine at a time. Let OPT  denote the makespan of an 
optimal schedule. 

Let 1
1

/ /
m

k i
i

LB n kρ
=

 =     
∑ , and  2 1

1
( ) /

m

k i
i

LB n kn ρ
=

 = +  
∑ . Further, let 1 2max{ , }SOL LB LB= . In 

the next section, we will show that 1LB  and 2LB  are lower bounds on OPT , and SOL OPT=  
indeed.   

Algorithm A1: 
Step 1. Calculate SOL  as described above. 
Step 2. Schedule the tasks requiring k  processors on the machines which have at least k  

processors in time interval 1[0, ]LB . 
Step 3. Assign the tasks requiring one processor to the remaining free processors on the 

machines in time interval [0, ]SOL . 
We use the following two instances to give an example.  
In the first instance, there are 3 machines 1 2 3, ,M M M  which have 2, 4, 8 processors, 

respectively. There are 7 tasks requiring 3 processors, and 5 tasks requiring 1 processor. Hence, 
we have: 1 7 / ( 4 / 3 ( 8 / 3 ) 3LB =  +  =        , 2 (5 3 7) / (2 4 8) 2LB = + × + + =   , 3SOL = . Algorithm 
A1 first schedules the tasks requiring 3 processors in time interval [0,3] : It assigns 6 tasks 
requiring 3 processors on machine 3M . It also assigns 1 task requiring 3 processors on machine 

2M .  Algorithm A1 then schedules the tasks requiring 1 processor in time interval [0,3] : It assigns 
5 tasks requiring 1 processor on  machine 3M . All the tasks complete no later than time 3. 

In the second instance, there are 3 machines 1 2 3, ,M M M  which have 2, 4, 8 processors, 
respectively. There are 5 tasks requiring 3 processors, and 15 tasks requiring 1 processor. Hence, 
we have: 1 5 / ( 4 / 3 ( 8 / 3 ) 2LB =  +  =        , 2 (15 3 5) / (2 4 8) 3LB = + × + + =   , 3SOL = . Algorithm 
A1 first schedules the tasks requiring 3 processors in time interval [0, 2] : It assigns 4 tasks 
requiring 3 processors on machine 3M . It also assigns 1 task requiring 3 processors on machine 

2M .  Algorithm A1 then schedules the tasks requiring 1 processor in time interval [0,3] : First in 
time interval [0, 2] , it assigns 4 tasks requiring 1 processor on  machine 3M , 5 tasks requiring 1 
processor on  machine 2M , 4 tasks requiring 1 processor on  machine 1M . Then it has to assign 2 
tasks requiring 1 processor on machine 3M   in time interval[2,3] .  All the tasks complete no later 
than time 3. 
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The Analysis 
We now prove the correctness of the algorithm. 

Theorem 1. Algorithm A1 is a linear time optimal algorithm for a special case of the problem of 
scheduling multiprocessor tasks in a multi-machine environment where all the tasks have unit 
processing times and each task requires one or k  processors.  

Proof. First, we show that 1LB  and 2LB  are lower bounds on OPT , and SOL OPT≤ . Consider 
an optimal schedule *Σ  for the problem. By a simple task interchange argument, *Σ  can be easily 
transformed into another feasible schedule (without increasing makepsan) in which the tasks 
requiring k  processors are scheduled just as Step 2 of Algorithm A1 does. Thus we get: 

1LB OPT≤ . To prove 2LB OPT≤ , we cut each task requiring k  processors into k  unitized tasks 
each of which requires one processor. Obviously, the original tasks requiring one processor 
together with the unitized tasks cannot be completed before time 2LB  in any feasible schedule. 
Therefore we get: 2LB OPT≤ . It follows that SOL OPT≤ . 

Next, we show that SOL OPT=  indeed and thus Algorithm A1 generates an optimal schedule. 
Since SOL OPT≤ , we only need to prove that Algorithm A1 generates a feasible schedule. 

Since there is an optimal schedule in which the tasks requiring k  processors are scheduled just 
as Step 2 of Algorithm A1 does, all the tasks requiring k  processors can be scheduled by Step 2 
of Algorithm A1. Consider Step 3 of Algorithm A1. Suppose that there is a task requiring one 
processor, say task j , which cannot be assigned in time interval [0, ]SOL . Then, all the 
processors on machines 1 2, , , mM M M  must be busy during the interval [0, ]SOL . It follows that 

1 2
1 1

1 1
m m

k i i
i i

n kn SOL LBρ ρ
= =

+ ≥ ⋅ + ≥ ⋅ +∑ ∑ , a contradiction.  

Conclusion 
In this paper, we studied the problem of scheduling multiprocessor tasks in a multi-machine 
environment. The objective is to minimize makespan. Since the general problem is strongly NP-hard, 
we presented a linear time optimal algorithm which solves a special case of the problem where all the 
tasks have unit processing times and each task requires one or k (k is part of the input) processors. It 
would be interesting to search for other polynomially solvable cases of the problem. Another 
interesting direction is to design fast algorithms with approximation ratios better than 3 for the 
general problem. 
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