

A Polynomially Solvable Case of Scheduling Multiprocessor Tasks in a
Multi-Machine Environment

Xiao Xina, *, Min Moub and Guohua Muc
College of Foreign Studies, Shandong Institute of Business and Technology, Yantai, 264005, China

axinxiaoyt@hotmail.com, bmouminyt@hotmail.com, cmuguohuayt@hotmail.com, *Corresponding
author

Keywords: Parallel Processing, Scheduling, Multiprocessor tasks, Makespan, Polynomially
solvable case.

Abstract. The problem of scheduling multiprocessor tasks in a multi-machine environment is
considered. Each machine contains a number of identical processors. Each task requires a number of
processors on a single machine for its processing. The objective is to minimize the overall task
completion time, i.e. the makespan. The general problem has been known to be strongly NP-hard. A
linear time optimal algorithm is presented for a special case of the problem where all the tasks have
unit processing times and each task requires one or k (k is part of the input) processors. The small
computational effort of the algorithm is valuable in some practical applications.

Introduction

Multiprocessor task scheduling problem is an important issue in a distributed computing
environment [1]. The problem can be formally defined as follows. There are n independent
multiprocessor tasks 1 2, , , nT T T which are to be processed on m machines 1 2, , , mM M M .
Machine iM (1, 2, ,i m= ) consists of iρ identical processors. All tasks are available at time
zero. Task jT (1, 2, ,j n= ) requires jδ processors on a single machine for its processing and
its processing time is equal to jt . The objective is to find a feasible schedule so as to minimize
the overall task completion time, i.e. the makespan.

Multiprocessor task scheduling is an extension of scheduling tasks on uniprocessor machines.
In the latter problem, each task jT must be processed on a single uniprocessor machine without
preemption. It is NP-hard even if there are only two machines [2], and strongly NP-hard for an
arbitrary number of machines [3]. The former problem is therefore strongly NP-hard, too.

Blazewicz et al. [4] studied the problem of scheduling multiprocessor tasks in a single
machine environment for minimizing makespan. They presented a linear time algorithm for a
special case where all the tasks have unit processing times and each task requires one or k (k is
part of the input) processors. They also presented a linear time algorithm for scheduling tasks
with unit processing times requiring an arbitrary number of processors between 1 and k at a time
where k is a fixed integer. Drozdowski [5] gave a detailed review on the problems of scheduling
multiprocessor tasks in a single machine environment for optimizing various objective functions.
Pascual et al. [6] and Rzadca [7] studied the problem of scheduling multiprocessor tasks in a
multi-machine environment for minimizing makespan where all the machines have the same
number of processors. Pascual et al. [6] proposed a 4-approximation algorithm and Rzadca [7]
proposed a 3-approximation algorithm. Later, the problem of scheduling multiprocessor tasks in
a multi-machine environment for minimizing makespan was studied in [8-10], and three
3-approximation algorithms were obtained. Lin and Liaw [11] proposed a 2.5-approximation
algorithm for the problem of scheduling multiprocessor tasks in a multi-machine environment for

minimizing makespan, under the assumption that
2
ρδ  ≤   

, where max j jδ δ= and min i iρ ρ= .

2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 123

1746

In this paper, we study the problem of scheduling multiprocessor tasks in a multi-machine
environment for minimizing makespan, allowing the machines have unequal number of
processors. We present a linear time optimal algorithm for a special case of the problem where all
the tasks have unit processing times and each task requires one or k (k is part of the input)
processors on a single machine. The result generalizes the first algorithm presented in [4] for the
single machine case.

The remainder of this paper is organized as follows. In Section 2, we present the algorithm. In
Section 3, we prove the correctness of the algorithm. We conclude this paper in Section 4.

The Algorithm

For the purpose of easier descriptions, we assume a machine indexing for machines 1 2, , , mM M M
such that 1i iρ ρ− ≤ holds and introduce 0 0ρ = , 1, 2, ,i m=  . Let 1n denote the number of the
tasks requiring one processor at a time. Similarly, let kn denote the number of the tasks requiring
k (k is not fixed) processors on a single machine at a time. Let OPT denote the makespan of an
optimal schedule.

Let 1
1

/ /
m

k i
i

LB n kρ
=

 =     
∑ , and 2 1

1
() /

m

k i
i

LB n kn ρ
=

 = +  
∑ . Further, let 1 2max{ , }SOL LB LB= . In

the next section, we will show that 1LB and 2LB are lower bounds on OPT , and SOL OPT=
indeed.

Algorithm A1:
Step 1. Calculate SOL as described above.
Step 2. Schedule the tasks requiring k processors on the machines which have at least k

processors in time interval 1[0,]LB .
Step 3. Assign the tasks requiring one processor to the remaining free processors on the

machines in time interval [0,]SOL .
We use the following two instances to give an example.
In the first instance, there are 3 machines 1 2 3, ,M M M which have 2, 4, 8 processors,

respectively. There are 7 tasks requiring 3 processors, and 5 tasks requiring 1 processor. Hence,
we have: 1 7 / (4 / 3 (8 / 3) 3LB =  +  =        , 2 (5 3 7) / (2 4 8) 2LB = + × + + =   , 3SOL = . Algorithm
A1 first schedules the tasks requiring 3 processors in time interval [0,3] : It assigns 6 tasks
requiring 3 processors on machine 3M . It also assigns 1 task requiring 3 processors on machine

2M . Algorithm A1 then schedules the tasks requiring 1 processor in time interval [0,3] : It assigns
5 tasks requiring 1 processor on machine 3M . All the tasks complete no later than time 3.

In the second instance, there are 3 machines 1 2 3, ,M M M which have 2, 4, 8 processors,
respectively. There are 5 tasks requiring 3 processors, and 15 tasks requiring 1 processor. Hence,
we have: 1 5 / (4 / 3 (8 / 3) 2LB =  +  =        , 2 (15 3 5) / (2 4 8) 3LB = + × + + =   , 3SOL = . Algorithm
A1 first schedules the tasks requiring 3 processors in time interval [0, 2] : It assigns 4 tasks
requiring 3 processors on machine 3M . It also assigns 1 task requiring 3 processors on machine

2M . Algorithm A1 then schedules the tasks requiring 1 processor in time interval [0,3] : First in
time interval [0, 2] , it assigns 4 tasks requiring 1 processor on machine 3M , 5 tasks requiring 1
processor on machine 2M , 4 tasks requiring 1 processor on machine 1M . Then it has to assign 2
tasks requiring 1 processor on machine 3M in time interval[2,3] . All the tasks complete no later
than time 3.

Advances in Engineering Research, volume 123

1747

The Analysis
We now prove the correctness of the algorithm.

Theorem 1. Algorithm A1 is a linear time optimal algorithm for a special case of the problem of
scheduling multiprocessor tasks in a multi-machine environment where all the tasks have unit
processing times and each task requires one or k processors.

Proof. First, we show that 1LB and 2LB are lower bounds on OPT , and SOL OPT≤ . Consider
an optimal schedule *Σ for the problem. By a simple task interchange argument, *Σ can be easily
transformed into another feasible schedule (without increasing makepsan) in which the tasks
requiring k processors are scheduled just as Step 2 of Algorithm A1 does. Thus we get:

1LB OPT≤ . To prove 2LB OPT≤ , we cut each task requiring k processors into k unitized tasks
each of which requires one processor. Obviously, the original tasks requiring one processor
together with the unitized tasks cannot be completed before time 2LB in any feasible schedule.
Therefore we get: 2LB OPT≤ . It follows that SOL OPT≤ .

Next, we show that SOL OPT= indeed and thus Algorithm A1 generates an optimal schedule.
Since SOL OPT≤ , we only need to prove that Algorithm A1 generates a feasible schedule.

Since there is an optimal schedule in which the tasks requiring k processors are scheduled just
as Step 2 of Algorithm A1 does, all the tasks requiring k processors can be scheduled by Step 2
of Algorithm A1. Consider Step 3 of Algorithm A1. Suppose that there is a task requiring one
processor, say task j , which cannot be assigned in time interval [0,]SOL . Then, all the
processors on machines 1 2, , , mM M M must be busy during the interval [0,]SOL . It follows that

1 2
1 1

1 1
m m

k i i
i i

n kn SOL LBρ ρ
= =

+ ≥ ⋅ + ≥ ⋅ +∑ ∑ , a contradiction.

Conclusion
In this paper, we studied the problem of scheduling multiprocessor tasks in a multi-machine
environment. The objective is to minimize makespan. Since the general problem is strongly NP-hard,
we presented a linear time optimal algorithm which solves a special case of the problem where all the
tasks have unit processing times and each task requires one or k (k is part of the input) processors. It
would be interesting to search for other polynomially solvable cases of the problem. Another
interesting direction is to design fast algorithms with approximation ratios better than 3 for the
general problem.

References

[1] J. Blazewicz, K. H. Ecker, G. Schmidt and J. Weglarz, Scheduling in computer and
manufacturing systems, Springer Science & Business Media, 2012.

[2] M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the theory of
NP-completeness, Freeman, New York, 1979.

[3] E. L. Lawler, J. K. Lenstra, A. H. R. Kan and D. B. Shmoys, Sequencing and scheduling:
Algorithms and complexity, Handbooks in operations research and management science. 4 (1993)
445-522.

[4] J. Blazewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to minimize
schedule length, IEEE Transactions on Computers. C-35 (1986) 389-393.

[5] M. Drozdowski, Scheduling multiprocessor tasks—An overview, European Journal of
Operational Research. 94 (1996) 215-230.

Advances in Engineering Research, volume 123

1748

[6] F. Pascual, K. Rzadca and D. Trystram, Cooperation in multi-organization scheduling, Euro-Par
2007 Parallel Processing. (2007) 224-233.

[7] K. Rzadca, Scheduling in multi-organization grids: measuring the inefficiency of
decentralization, in International Conference on Parallel Processing and Applied Mathematics. (2007)
1048-1058.

[8] U. Schwiegelshohn, A. Tchernykh and R. Yahyapour, Online scheduling in grids, in IEEE
International Symposium on Parallel and Distributed Processing, IPDPS 2008, Miami, Florida Usa,
April, 2008, pp. 1-10.

[9] J. F. Lin, List scheduling multiprocessor tasks in grid computing environments, ICIC Express
Letters. 4 (2010) 245-248.

[10] J. F. Lin, Performance analysis and discussion on a heuristic approach for scheduling
multiprocessor tasks in a grid computing environment, International Journal of Innovative
Computing Information & Control. 6 (2010) 5451-5462.

[11] J. F. Lin and H. Liaw, Worst performance analysis of scheduling multiprocessor tasks in a
multi-machine environment using LPT policy, in ICIM 2012 International Conference on
Information Management, Kaohsiung, Taiwan, 2012.

Advances in Engineering Research, volume 123

1749

