

A Linear Time Exact Algorithm for Scheduling Unit-processing-time-jobs
with Sizes 1 or k

Xiao Xin a, *, Guohua Mub and Min Mouc
College of Foreign Studies, Shandong Institute of Business and Technology, Yantai, 264005, China

axinxiaoyt@hotmail.com, bmuguohuayt@hotmail.com, cmouminyt@hotmail.com, *Corresponding
author

Keywords: Scheduling, Batch machines, Job sizes, Makespan, Linear time exact algorithm

Abstract. The problem of scheduling jobs with sizes on batch machines is considered. Each machine
can process several jobs as a batch simultaneously as long as the total size of these jobs does not
exceed the capacity of the machine. The processing time of a batch is defined to be the longest
processing time of the jobs in the batch. The goal is to minimize makespan, i.e., the maximum job
completion time. It has been known to be strongly NP-hard. A linear time exact algorithm is
presented for a special case where all the jobs have processing times 1 and sizes 1 or k (k is not fixed).

Introduction
Scheduling on batch machines has wide applications in many industries, such as semiconductor
manufacturing, mineral processing, steel casting, and transportation [1-3]. Different from the
classical scheduling where each machine can process at most one job at a time [4], in batch
scheduling, a machine can process several jobs as a batch simultaneously as long as the total size of
these jobs does not exceed the capacity of the machine. There are two popular models of batch
scheduling: serial batch and parallel batch. In the former model, the jobs in a batch are processed in
serial, and thus the processing time of a batch is equal to the sum of the processing times of the jobs in
that batch. In the latter model, the jobs in a batch are processed in parallel, and thus the processing
time of a batch is equal to the longest processing time of the jobs in that batch [5].

We consider the parallel batch scheduling model. The problem under study is described as
follows. There is a set of n jobs {1,2, , }n=  and a set of m parallel batch
machines 1 2{ , , , }mM M M=  . Job j (1, 2, ,j n= ) has a processing time 0jp ≥ and a
size 0js ≥ . Machine iM (1, 2, ,i m= ) has a finite capacity iK . A number of jobs can be
processed simultaneously as a batch on iM as long as the total size of these jobs does not
exceed iK . For simplicity, we assume that 1 2 mK K K≤ ≤ ≤ . A natural assumption is that

j ms K≤ holds for all jobs j . However, it is possible that j is K> for some i and j . The goal is to
minimize makespan, max max j jC C= , where jC denotes the completion time of job j in the
schedule. Following [6, 7], we denote this problem as max| , , |j iP s p batch K C− . In comparison, let

1 max| , , |j iP s K p batch K C≤ − denote the special case of the problem where 1js K≤ holds for all
jobs j . Note that max1| , , |js p batch B C− (the single machine case of max| , , |j iP s p batch K C−) is
strongly NP-hard [8]. Therefore, max| , , |j iP s p batch K C− is also strongly NP-hard.

A lot of research has been done on parallel batch scheduling problems [1-3]. Most of the existing
results dealt with the problems with identical job sizes or batch capacities. Recently, several papers
appeared which studied the problem with non-identical job sizes and batch capacities [9-14]. Xu and
Bean [9] presented a genetic algorithm for 1 max| , , |j iP s K p batch K C≤ − which is based on random
keys encoding. Wang and Chou [10] studied 1 max| , , , |j j iP r s K p batch K C≤ − which is more general
than 1 max| , , |j iP s K p batch K C≤ − in that jobs have different release times. They proposed a

2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 123

1760

meta-heuristic based on simulated annealing and genetic algorithms. Damodaran et al. [11] and Jia et
al. [12] studied max| , , |j iP s p batch K C− . Damodaran et al. [11] proposed a particle swarm
optimization algorithm. They also provided the results of the comparative experiment which
validateed the effectiveness and efficiency of the algorithm. Jia et al. [12] presented a heuristic and a
meta-heuristic. Wang and Leung [13] studied max| 1, , , |j j iP p s p batch K C= − (the special case of

max| , , |j iP s p batch K C− where all the jobs have processing times 1). They first proved that this
problem cannot be approximated to within a ratio better than 2 unless P=NP, and then provided a
2-approximation algorithm for it. They also gave an algorithm which for any instance returns a
schedule with makespan at most 3/2 times of the optimal value plus 1. Computational experiment
showed the algorithms perform well in practice. Jia et al. [14] studied

max| , , , |j j iP r s p batch K C− which is more general than max| , , |j iP s p batch K C− in that jobs have
different release times. They provided several heuristics to solve the problem.

In this paper, we study a special case of max| , , |j iP s p batch K C− where all the jobs have
processing times 1 and sizes 1 or k (k is not fixed). This case is denoted as

max| 1, {1, }, , |j j iP p s k p batch K C= ∈ − . We present a linear time exact algorithm for it. The result is
obtained by modifying a linear time algorithm presented in [15] for a special case of scheduling
multiprocessor tasks where all the tasks have processing times 1 and each task requires 1 or k (k
is not fixed) processors.

The remainder of this paper is organized as follows. In Section 2, a linear time exact algorithm
is presented. In Section 3, the correctness of the algorithm is proved. In Section 4, the concluding
remarks are drawn.

An Exact Algorithm

In this section, we will present an algorithm called GREEDY for
max| 1, {1, }, , |j j iP p s k p batch K C= ∈ − . Since the jobs have processing times 1, any job assigned to a

machine occupies a time slot. A time slot refers to a time interval of length 1. Certainly, the jobs in a
batch occupy the same time slot on a machine. Let v represent time slot [1,)v v− , 1, 2,v =  .

In the algorithm, the jobs with size k are first scheduled, and then the jobs with size 1 are
scheduled. All the jobs are scheduled greedily, i.e., they are processed as early as possible.

Algorithm GREEDY:
 Step 1. Schedule the jobs with size k in the following greedy manner:
 For 1, 2,v =  ,
 For , 1, ,i m m l= −  (l denotes the smallest machine index such that lK k≥), do:
 Open a batch to accommodate /iK k   unassigned jobs with size k (or as
 many as possible of unassigned jobs with size k) and assign the batch to time
 slot v on machine iM . If there are no unassigned jobs with size k , then let t
 denote the completion time of the last assigned job with size k . This job is
 processed on machine

1l
M (1l l≥). Goto Step 2.

 Step 2. Schedule the jobs with size 1 in the following greedy manner:
 (i) For 1, 2, ,v t=  (v t≤),
 For , 1, ,1i m m= −  , do:
 Let viB denote the batch processed in time slot v on iM . Let vin denote the
 number of the jobs with size k in viB . (Note that batches

1 1(1) (2), , ,t l t l tlB B B− − 
 must be empty. Moreover, for v t≤ and i l< , viB must also be empty.) Fill
 viB with i viK n− unassigned jobs with size 1 (or as many as possible of

Advances in Engineering Research, volume 123

1761

 unassigned jobs with size 1) such that the batch becomes full (or as full as
 possible). If there are no unassigned jobs with size 1, then Goto Step 3.
 (ii) For 1, 2,v t t= + +  (v t>),
 For , 1, ,1i m m= −  , do:
 Open a batch to accommodate iK unassigned jobs with size 1 (or as many as
 possible of unassigned jobs with size 1) and assign the batch to time slot v
 on machine iM . If there are no unassigned jobs with size 1, then Goto Step
 3.
 Step 3. Output the generated schedule.

The Analysis
We now prove the correctness of the algorithm.

Theorem 1. Algorithm GREEDY is an exact algorithm for max| 1, {1, }, , |j j iP p s k p batch K C= ∈ −
that runs in ()O n time.

Proof. Fix an optimal schedule *Σ with makespan OPT for
max| 1, {1, }, , |j j iP p s k p batch K C= ∈ − . By exchanging some jobs between the batches in *Σ , we can

modify *Σ into a schedule in which all the jobs with size k are scheduled in the same greedy
manner as Step 1 of Algorithm GREEDY. Therefore, we get t OPT≤ .

Let Σ denote the schedule generated by Algorithm GREEDY with makespan maxC . Clearly,
machine mM must complete at time maxC . If maxC t= , then Σ is an optimal schedule. If maxC t> , let
j denote a job in Σwhich is completed on machine mM at time maxC . Job j must have size 1, since

all the jobs with size k have been completed at time maxt C< . When job j is assigned, each
machine has processed exactly max 1C − full batches. Hence the jobs which have been assigned before
j , together with j , cannot be completed before time maxC in any feasible schedule. Therefore, Σ is

also optimal when maxC t> .

Conclusion

In this paper, we studied the problem of scheduling jobs with sizes on batch machines to minimize
makespan. For this strongly NP-hard problem, we presented a linear time exact algorithm for a
special case where all the jobs have processing times 1 and sizes 1 or k (k is not fixed). It would be
interesting to design polynomial time exact algorithms for other special cases of the problem.

References

[1] C. N. Potts and M. Y. Kovalyov, Scheduling with batching: a review, European journal of
operational research. 120 (2000) 228-249.

[2] M. Mathirajan and A. Sivakumar, A literature review, classification and simple meta-analysis on
scheduling of batch processors in semiconductor, The International Journal of Advanced
Manufacturing Technology. 29 (2006) 990-1001.

[3] L. Mönch, J. W. Fowler, S. Dauzère-Pérès, S. J. Mason and O. Rose, A survey of problems,
solution techniques, and future challenges in scheduling semiconductor manufacturing operations,
Journal of Scheduling. 14 (2011) 583-599.

[4] M. Drozdowski, Classic scheduling theory, Scheduling for parallel processing, Springer, 2009,
pp. 55-86.

Advances in Engineering Research, volume 123

1762

[5] S. Webster and K. R. Baker, Scheduling groups of jobs on a single machine, Operations Research.
43 (1995) 692-703.

[6] P. Brucker, Scheduling algorithms (fifth edition), Springer, 2007.

[7] R. L. Graham, E. L. Lawler, J. K. Lenstra and A. R. Kan, Optimization and approximation in
deterministic sequencing and scheduling: a survey, Annals of discrete mathematics. 5 (1979)
287-326.

[8] R. Uzsoy, Scheduling a single batch processing machine with non-identical job sizes,
International Journal of Production Research. 32 (1994) 1615-1635.

[9] S. Xu and J. C. Bean, A genetic algorithm for scheduling parallel non-identical batch processing
machines, IEEE Symposium on Computational Intelligence in Scheduling. (2007) 143-150.

[10] H.-M. Wang and F.-D. Chou, Solving the parallel batch-processing machines with different
release times, job sizes, and capacity limits by metaheuristics, Expert Systems with Applications. 37
(2010) 1510-1521.

[11] P. Damodaran, D. A. Diyadawagamage, O. Ghrayeb and M. C. Vélez-Gallego, A particle swarm
optimization algorithm for minimizing makespan of nonidentical parallel batch processing machines,
The International Journal of Advanced Manufacturing Technology. 58 (2012) 1131-1140.

[12] Z.-h. Jia, K. Li and J. Y.-T. Leung, Effective heuristic for makespan minimization in parallel
batch machines with non-identical capacities, International Journal of Production Economics. 169
(2015) 1-10.

[13] J.-Q. Wang and J. Y.-T. Leung, Scheduling jobs with equal-processing-time on parallel
machines with non-identical capacities to minimize makespan, International Journal of Production
Economics. 156 (2014) 325-331.

[14] Z. H. Jia, T. T. Wen, Y. T. Leung and K. Li, Effective heuristics for makespan minimization in
parallel batch machines with non-identical capacities and job release times, Journal of Industrial and
Management Optimization. 13 (2017) 977-993.

[15] J. Blazewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to minimize
schedule length, IEEE Transactions on Computers. C-35 (1986) 389-393.

Advances in Engineering Research, volume 123

1763

