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Abstract. The problem of scheduling jobs with sizes on batch machines is considered. Each machine 
can process several jobs as a batch simultaneously as long as the total size of these jobs does not 
exceed the capacity of the machine. The processing time of a batch is defined to be the longest 
processing time of the jobs in the batch. The goal is to minimize makespan, i.e., the maximum job 
completion time. It has been known to be strongly NP-hard. A linear time exact algorithm is 
presented for a special case where all the jobs have processing times 1 and sizes 1 or k (k is not fixed).  

Introduction 
Scheduling on batch machines has wide applications in many industries, such as semiconductor 
manufacturing, mineral processing, steel casting, and transportation [1-3]. Different from the 
classical scheduling where each machine can process at most one job at a time [4], in batch 
scheduling, a machine can process several jobs as a batch simultaneously as long as the total size of 
these jobs does not exceed the capacity of the machine. There are two popular models of batch 
scheduling: serial batch and parallel batch. In the former model, the jobs in a batch are processed in 
serial, and thus the processing time of a batch is equal to the sum of the processing times of the jobs in 
that batch. In the latter model, the jobs in a batch are processed in parallel, and thus the processing 
time of a batch is equal to the longest processing time of the jobs in that batch [5].  

We consider the parallel batch scheduling model. The problem under study is described as 
follows. There is a set of n  jobs {1,2, , }n=   and a set of m  parallel batch 
machines 1 2{ , , , }mM M M=  . Job j  ( 1, 2, ,j n=  ) has a processing time 0jp ≥  and a 
size 0js ≥ . Machine iM  ( 1, 2, ,i m=  ) has a finite capacity iK . A number of jobs can be 
processed simultaneously as a batch on  iM   as long as the total size of these jobs does not 
exceed iK . For simplicity, we assume that 1 2 mK K K≤ ≤ ≤ . A natural assumption is that 

j ms K≤  holds for all jobs j . However, it is possible that j is K>  for some i  and j . The goal is to 
minimize makespan, max max j jC C= , where jC  denotes the completion time of job j  in the 
schedule. Following [6, 7], we denote this problem as max| , , |j iP s p batch K C− . In comparison, let 

1 max| , , |j iP s K p batch K C≤ −  denote the special case of the problem where 1js K≤  holds for all 
jobs j . Note that max1| , , |js p batch B C−  (the single machine case of max| , , |j iP s p batch K C− ) is 
strongly NP-hard [8]. Therefore, max| , , |j iP s p batch K C−  is also strongly NP-hard.  

A lot of research has been done on parallel batch scheduling problems [1-3]. Most of the existing 
results dealt with the problems with identical job sizes or batch capacities. Recently, several papers 
appeared which studied the problem with non-identical job sizes and batch capacities [9-14]. Xu and 
Bean [9] presented a genetic algorithm for 1 max| , , |j iP s K p batch K C≤ −  which is based on random 
keys encoding. Wang and Chou [10] studied 1 max| , , , |j j iP r s K p batch K C≤ − which is more general 
than 1 max| , , |j iP s K p batch K C≤ −  in that jobs have different release times. They proposed a 
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meta-heuristic based on simulated annealing and genetic algorithms. Damodaran et al. [11] and Jia et 
al. [12] studied max| , , |j iP s p batch K C− .  Damodaran et al. [11] proposed a particle swarm 
optimization algorithm. They also provided the results of the comparative experiment which 
validateed the effectiveness and efficiency of the algorithm. Jia et al. [12] presented a heuristic and a 
meta-heuristic. Wang and Leung [13] studied max| 1, , , |j j iP p s p batch K C= −  (the special case of 

max| , , |j iP s p batch K C−  where all the jobs have processing times 1). They first proved that this 
problem cannot be approximated to within a ratio better than 2 unless P=NP, and then provided a 
2-approximation algorithm for it. They also gave an algorithm which for any instance returns a 
schedule with makespan at most 3/2 times of the optimal value plus 1. Computational experiment 
showed the algorithms perform well in practice. Jia et al. [14] studied 

max| , , , |j j iP r s p batch K C− which is more general than max| , , |j iP s p batch K C−  in that jobs have 
different release times. They provided several heuristics to solve the problem.  

In this paper, we study a special case of max| , , |j iP s p batch K C−  where all the jobs have 
processing times 1 and sizes 1 or k (k is not fixed). This case is denoted as 

max| 1, {1, }, , |j j iP p s k p batch K C= ∈ − . We present a linear time exact algorithm for it. The result is 
obtained by modifying a linear time algorithm presented in [15] for a special case of scheduling 
multiprocessor tasks where all the tasks have processing times 1 and each task requires 1 or k  ( k  
is not fixed) processors.  

The remainder of this paper is organized as follows. In Section 2, a linear time exact algorithm 
is presented. In Section 3, the correctness of the algorithm is proved. In Section 4, the concluding 
remarks are drawn.  

An Exact Algorithm 

In this section, we will present an algorithm called GREEDY for 
max| 1, {1, }, , |j j iP p s k p batch K C= ∈ − . Since the jobs have processing times 1, any job assigned to a 

machine occupies a time slot. A time slot refers to a time interval of length 1. Certainly, the jobs in a 
batch occupy the same time slot on a machine. Let v  represent time slot [ 1, )v v− , 1, 2,v =  .  

In the algorithm, the jobs with size k  are first scheduled, and then the jobs with size 1 are 
scheduled. All the jobs are scheduled greedily, i.e., they are processed as early as possible.  

Algorithm GREEDY: 
 Step 1. Schedule the jobs with size k  in the following greedy manner: 
              For 1, 2,v =  , 
                    For , 1, ,i m m l= −   ( l  denotes the smallest machine index such that lK k≥ ), do: 
                        Open a batch to accommodate /iK k     unassigned jobs with size k  (or as  
                        many as possible of unassigned jobs with size k  ) and assign the batch to time  
                        slot v  on machine iM . If there are no unassigned jobs with size k , then let t   
                        denote the completion time of the last assigned job with size k .  This job is  
                        processed on machine 

1l
M  ( 1l l≥ ). Goto Step 2.  

   Step 2. Schedule the jobs with size 1 in the following greedy manner: 
         (i) For 1, 2, ,v t=   ( v t≤ ), 
                    For , 1, ,1i m m= −  , do: 
                         Let viB  denote the batch processed in time slot v  on iM . Let vin  denote the  
                         number of the jobs with size k  in viB . (Note that batches 

1 1( 1) ( 2), , ,t l t l tlB B B− −    
                         must be empty. Moreover, for v t≤  and i l< , viB  must also be empty.) Fill  
                        viB  with i viK n−  unassigned jobs with size 1 (or as many as possible of  
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                         unassigned jobs with size 1 ) such that the batch becomes full (or as full as  
                          possible). If there are no unassigned jobs with size 1, then Goto Step 3.  
            (ii) For 1, 2,v t t= + +   ( v t> ), 
                       For , 1, ,1i m m= −  , do: 
                         Open a batch to accommodate iK  unassigned jobs with size 1 (or as many as   
                          possible of unassigned jobs with size 1) and assign the batch to time slot v    
                          on machine iM . If there are no unassigned jobs with size 1, then Goto Step  
                          3.  
       Step 3. Output the generated schedule. 

The Analysis 
We now prove the correctness of the algorithm. 

Theorem 1. Algorithm GREEDY is an exact algorithm for max| 1, {1, }, , |j j iP p s k p batch K C= ∈ −  
that runs in ( )O n  time.  

Proof. Fix an optimal schedule *Σ  with makespan OPT  for 
max| 1, {1, }, , |j j iP p s k p batch K C= ∈ − . By exchanging some jobs between the batches in *Σ , we can 

modify *Σ  into a schedule in which all the jobs with size k  are scheduled in the same greedy 
manner as Step 1 of  Algorithm GREEDY. Therefore, we get t OPT≤ . 

Let Σ  denote the schedule generated by Algorithm GREEDY with makespan maxC . Clearly, 
machine mM  must complete at time maxC . If maxC t= , then Σ  is an optimal schedule. If  maxC t> , let 
j  denote a job in Σwhich is completed on machine mM  at time maxC . Job j  must have size 1, since 

all the jobs with size k  have been completed at time maxt C< . When job j  is assigned, each 
machine has processed exactly max 1C −  full batches. Hence the jobs which have been assigned before 
j , together with j , cannot be completed before time maxC  in any feasible schedule. Therefore, Σ  is 

also optimal when maxC t> .  

Conclusion 

In this paper, we studied the problem of scheduling jobs with sizes on batch machines to minimize 
makespan.  For this strongly NP-hard problem, we presented a linear time exact algorithm for a 
special case where all the jobs have processing times 1 and sizes 1 or k (k is not fixed). It would be 
interesting to design polynomial time exact algorithms for other special cases of the problem.  
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