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Abstract. In this paper, we present a tri-diagonal parsimonious higher-order multivariate Markov 
chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, the estimation 
method of the parameters in TP-HOMMCM is given. Numerical experiments illustrate the 
effectiveness of TPHOMMCM-NCC. 

Introduction 
Markov chains have been applied in many research areas, such as, speech recognition [1], internet 
application [2], finance [3],  music [4] and so on [5-10] . Developing a better model for a more 
accurate prediction is an urgent task. The relationships of different categorical data sequences are 
helpful to accurate prediction. 

Different methods for multiple categorical data sequences prediction have been proposed, e.g., 
the first-order multivariate Markov chain model [11], higher-order multivariate Markov chain 
model [12] and an improved multivariate Markov chain model [13]. 

In this paper, we propose a tri-diagonal parsimonious higher-order multivariate Markov chain 
model with new convergence condition for enhancing the prediction precision and controlling the 
parameter number of the model. 

The organization of this paper is organized as follows. In Section 2, we review several definitions 
and a model of Markov chain model. In Section 3, a tri-diagonal parsimonious higher-order 
multivariate Markov chain model with new convergence condition is proposed for multiple 
categorical data sequences. In Section 4, we estimate the parameters of the tri-diagonal 
parsimonious higher-order multivariate Markov chain model with new convergence condition. 
Numerical experiments show the effectiveness of our model in Section 5. 

Review on the Markov chains 
In this section, we briefly introduce several definitions and the first-order Markov chain model. 
Several definitions of the Markov chain are first introduced [11]. 
Definition 1 Let the state set of the categorical data sequence with m states be }21{Μ ,m,, K= and 

,M∈kθ  }{1,2,K=k . If the sequence },,,{ 210 Kxxx with m  states satisfies the following relationships: 
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this sequence is called as first-order discrete-time Markov chain. 
Definition 2 The conditional probability 

)|(Pr 11 tttt xxob θθ == ++  
is called as the transition probability of the Markov chain. 
Definition 3 Rewriting the transition probability as 

M,,),|(Pr 1, ∈∀=== + kjkxjxobp ttkj  
then the transition probability matrix is 
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Definition 4 Suppose that ,1 tt PXX =+  then  ,,,( 21 Kttt xxX =  Tm
tx ) is the state probability distribution 

and 0X  the initial probability distribution. 

Tri-diagonal parsimonious higher-order multivariate Markov chain model with new 
convergence condition 
In this part, a tri-diagonal parsimonious higher-order multivariate Markov chain model with new 
convergence condition (TPHOMMCM-NCC) is presented. 
Tri-diagonal parsimonious higher-order multivariate Markov chain model 
For },,,1{},,,2,1{, KK nntskj −∈∀∈∀ TPHOMMCM-NCC is  
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where ),,2,1(,, )(
1

)(
1

)(
0 skxxx k

n
kk KK =− are the initial probability distributions, the normalization constant 
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where )(
1
j

tx + is the state probability distribution at time t+1  in the kth sequence and ),( kj
hP the hth step 

transition probability matrix from the states at time t-h+1 in the kth sequence to the states at time 
t+1 in the jth sequence. 
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t IRxxxX the tri-diagonal parsimonious higher-order multivariate 
Markov chain model in matrix form has 
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where if  kj =  























=

000
00
000
000

),(
1

)1(
,

),(
1

)1(
,

),(
1

)1(
,

),(
1

)1(
,

),(

I

I
I

PPPP

B

kj
kj

kj
kj

kj
kj

kj
kj

kj

K
OOM
O
K
K λλλλ

,






















=

−−−−

−

000
00
000
000

),(
1

)1(
,

),(
1

)1(
,

),(
1

)1(
,

),(
1

)1(
,

),(

I

I
I

PPPP

B

kj
kj

kj
kj

kj
kj

kj
kj

kj

K
OOM
O
K
K λλλλ
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Here, the column sum of −+ BB ,  are not necessary equal to one. 
Convergence condition 
After t steps iteration of TPHOMMCM-NCC  
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This theorem has been proved.  

Parameter estimation 
In this section, we will estimate the parameters of the tri-diagonal parsimonious higher-order 
multivariate Markov chain model. 

Let's first estimate the transition matrix. Probability transition matrix ),( kj
hP  is  
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Next, the way of estimating the parameter )(
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h
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distribution be 
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where 0≥ω  and ω is as small as possible. 
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Transform (3) into a minimization problem: 
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Application to sales demand prediction with tri-diagonal parsimonious higher-order 
multivariate Markov chain model 
In this part, the sales demand categorical data sequences are presented to show the effectiveness of 
the tri-diagonal parsimonious higher-order multivariate Markov chain model. 

The storage space of a soft drink company in Hong Kong is often in the state of overflow or near 
capacity. The production planning and the inventory control directly affect the estate cost. Thus, 
studying the interplay between the storage space requirement and the overall growing sales demand 
is hanging over the company's head. Predicting the sales demand with a more precise Markov chain 
model is beneficial for minimizing the estate cost. 

We classifies the sales demand into six states (1,2,3,4,5,6),e.g., 1= no sales volume, 2= vary low 
sales volume, 3= low sales volume, 4= standard sales volume, 5= fast sales volume, 6= vary fast 
sales volume. The customer's sales demand states in the same customer group of five important 
products of the company for a year is given in the Appendix [11]. 

Noting that tX  is a predict probability at time t , tX  a fact value at time t  and Ts
ttt XXX ],,[ 1 K= , nA  

the data number of each sequence. If tm is the fact state at t  in i th categorical data sequence, 
mT

m
i
t IReX

t

×∈== 1
)( }0,,0,1,0,,0{ KK . We denote the prediction error in the models as pe which can be 

estimated by the equation 
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2
. 

 
 M1 M2 M3 
n pn pe pn pe pn pe 
1 13 314.67 25 259.35 13 269.75 
2 18 298.10 50 247.36 18 259.05 
3 23 297.98 75 246.31 23 257.68 
4 28 298.42 100 246.31 28 257.67 
5 33 302.22 125 246.31 33 238.81 
6 38 301.40 150 247.16 38 239.28 
7 43 301.97 175 246.91 43 239.28 
8 48 299.97 200 246.91 48 240.51 
Table 1: Prediction errs of M1, M2 and M3. 

 
In Tables, denote that α the convergence factor of the convergence condition, n  is the order of 

the model, 1M   higher-order multivariate Markov chain model, 2M  parsimonious higher-order 
multivariate Markov chain model and 3M  the tri-diagonal parsimonious higher-order multivariate 
Markov chain model. 

From the results of Figure 1,2,3, we find that the tri-diagonal parsimonious higher-order 
multivariate Markov chain model preforms better than parsimonious higher-order multivariate 
Markov chain model and the higher-order multivariate Markov chain model in parameter number 
comparing, time consuming and the prediction precision. 
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Conclusions 
We have investigated a tri-diagonal parsimonious higher-order multivariate Markov chain model 
and discussed its convergence condition. Numerical experiments show that the tri-diagonal 
parsimonious higher-order multivariate Markov chain model is efficient. Certainly, this model can 
be applied in credit risk, gene expression and other research areas. 
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