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Abstract. In this paper, we study a preconditioned Gauss-Seidel iterative method with the
preconditioner which proposed in [1] for solving a linear system whose coefficient matrix is a
M-matrix. Some corresponding comparison results between the preconditioned Gauss-Seidel
iterative method and the basic AOR iterative method are obtained. Finally, a numerical example is
given to illustrate our results.

Introduction
Consider the following linear system
Ax=b, (D
where A isan n” n nonsingular matrix, x and b are n-dimensional vectors. If Ais split into
A=M- N,

where M is nonsingular, then the basic iterative method for solving the linear system (1) can be
expressed in the form
XD =M INx® + M b, k=0,1,Y%

Without loss of generadlity, let A=1- L- U ,where | istheidentity matrix,- L and - U are strictly
lower and upper triangular matrices of A, respectively. Then theiteration matrix of the classical AOR
iterative method (cf. [2]) for solving the linear system (1) is

T, =(-rL)[@- w)l +(w- r)L+wU] , 2)
where w and r arereal number withw* 0.

Theiteration matrix of the classical SOR iterative method for solving the linear system (1) is(Note
that forw =r , we get the SOR iterative method.)

T, =( - wL) [@- w)l +wU] 3

Then the iteration matrix of the classica Gauss-Seidel iterative method for solving the linear
system (1) is(Note that forw =r =1, we get the Gauss-Seidel iterative method.)

Tos = (1 - L)'u (4)

The spectral radius of the iterative matrix is decisive for the convergence and stability of the
method, and the smaller it is, the faster the method converges when the spectral radiusis smaller than
1. The effective method to decrease the spectral radius is to precondition the linear system, thus we
now transform the origina system (1) into the preconditioned form

PAX = Pb, (5)
where PT R" "isanonsingular matrix. The corresponding basic iterative method is given in general
by

XD =M, N x® + M, 'Pb, k =0,1%,
wherePA= M, - N,isasplitting of PAand M isnonsingular.

In [1], the authors presented a preconditioned AOR method for consistent systems by using the

preconditioner P,* =1 +S* , where
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anda isaparameter, i =12,K,n- 1, k =minj1 {j‘maxwi) a,.j‘, i<n}.

In this paper, we prove theoretically that if Ais a nonsingular M-matrix, the spectral radius of
precond-itioned Gauss-Seidel iterative method by using the preconditioner is faster than that of AOR
method and the SOR iterative method and the Gauss-Seidel iterative method.

Preliminaries

For convenience, we shall now briefly explain some of the terminologies used in the paper.
For A=(q;) , B:(QJ.)T R""™ we write A3 B if a; * b holds for i,j=12K,n .Caling
Anonnegative if A3 0. (a; ® G;i, ] =12,K,n). For a square matrix A, r (A) denotes the spectra
radius of A.

Definition2.1 A matrix A= (g;) iscaled aZ-matrix if g, £0 fori* j, Z-matrix isanonsingular
M-matrix, if A isnonsingular and A3 0.

Definition2.2 Let A be area matrix. The representation A=M - N iscaled a splitting of A if
M isanonsingular matrix. The splitting is called

(a) regular if M"*3 0, N3 0;

(b) weak regular if M"*3 0, M"*N 3 0.

Lemma 2.3 Let A beaZ-matrix. Then the following statements are equivalent:

(@ A isanonsingular M-matrix.

(b) All principa sub-matrices of Aare non-singular M-matrices.

(c) All principal minors are positive.

Lemma 2.4 Let A*30 and A=M- N=M- N be two weak regular splittings of A, If
M*EM tandM 3 0 ,thenr (M *N)3 r (M~IN).

Lemma 2.5 Let A beanonsingular M-matrix. Thenr (T,,,) <1.

Result and proof
Throughout this paper, we alwaysassumethata, * 0,i =1,2,K,n-1.LetA=1- L- U, where |
isthe identity matrix, - L and - U are strictly lower and upper triangular parts of A, respectively. We

denote
A2 =(1+S*)A=(1+S?)(I-L-U)=I-L-U+S?-S?L-S?U. (6)
Then the iterative matrix of the preconditioned Gauss-Seidel iterative method is
T, =(-L-D¢- LR ) (U- S7 +S7U+F9, (7)

where D¢, E¢and Flarethediagonal, strictly lower and upper triangular partsof S 7L, respectively.
Theorem 3.1. Let A=(a;)1 R""be a nonsingular M-matrix. Assume thatO£r £w£1w? 0.
LetT,,, and T,* bedefined by (2) and (7), fora; T [01],i =12,K,n- 1, r (T,*) £1 (T,,) <1.

Proof. Let
E,=1-L-D¢-L¢ F =U-S*+S*U+Fg,
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AsU:3 S, itisclear thatF, * 0. We know that the diagonal elementsof E, are 1-a,a,, a, ; ,
it nand a, =1. Since A isanonsingular M-matrix, it is clear that al principal minors of A are
positive by Lemma 2.3 .Since al the diagona entries of A, we have 1- a,3a ;>0 .
Asa;l [0],i=12K,n- 1, wehavel- a;a,3a,; >0. Thisimplies that all the diagonal entries of
E, are positive, soweknow that E, isanonsingular M-matrix by Lemma2.3. Thuswehave E, '3 0
by Definition 2.1 and thenE, *F, 3 0. Noticethat | +S,? isnonsingular and let

M, =(1+S?*)*E,, N, =(1 +S?)*F,,

then
M, '=E*(1+S2)%0, M, 'N, =E,'F, 3 0.
Since
Ay =(1+S7)A=E, - F,
we obtain
A=M, - N,,
and A=M,_ - N, isaweak regular splitting of Aby Definition 2.2.
As
1 1
A==—(l-rL)- =[@- w)l +(w- r)L+wU],
w w
let

M, :l(l -rL), N, :1[(1- w)l +(w- r)L+wU],
Tow Tow
snce O£r Ew£1l w? 0, wehave
M,.%0 N, 20.
So A=M,,, - N, =M, - N, betwo weak splittingof AandN,,, 2 0.
ByOEr£w£1l w?! O, weobtain
1 1 r
—({-rL)y=—1-—L31-L31-L-D¢-L¢=E,,
S-rm=cl- o s-L¥=g

itisclear that
M, E,
and therefore
M. tEETEE (IS =M,
So by Lemma 2.4, we have
rT ) Er(T,).
Thusfrom Lemma 2.5, we knowr (T,, ) <1, sowe obtain
rT, )Er(T,,) <Ll

Corollary3.2. Let A:(qj)T R""be a nonsingular M-matrix. Assume thatO£r £Ew£1,w? 0.
Let T, and T.* bedefined by (3) and (7), fora, 1 [01],i =1,2,K,n- 1,r (T,*) £r (T, ) <1.

Proof. We can have the conclusion immediately by let w =r in Theorem 3.1.

Corollary3.3. Let A=(a;)| R""beanonsingular M-matrix. AssumethatO£r £Ew£1w? 0.
Let T, and T,* bedefined by (4) and (7), fora, 1 [01],i =1,2,K,n- 1,r (T,*) £ (Tg) <1.

Proof. We can have the conclusion immediately by let w =r =1in Theorem 3.1.
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Numerical example

In this section, we give a numerical example to illustrate the comparison theorem of the
preconditioned Gauss-Seidel iterative method and the AOR iterative method for solving the linear

system (1), where A isan nonsingular M- matrix.
If the coefficient matrix A of (1) isgiven by
€1.000 -0.097

£-0223  1.000
A=6-0002 -0.354
£-0.007 -0.291
& -0257 -0.181

-0.103
-0.324
1.000
-0.393
-0.234

-0.271
-0.165
-0.390
1.000

-0.177

-0.2684)
-0.2893
-0.6420,

u
-0.106@
1.000 {

and the parameters w,r and a,,i =1,2,K, n- laccording to the conditions imposed in Theorem 3.1.
For the AOR iterative method, with w = 0.8andr = 0.7, thenr (T, ) = 0.9704 .If wetakea, = 0.213,

a, =0.655,a, =0.964anda , = 0.727, then we haver (T ) =0.9308<r (T, ) =0.9704<1.
From the above numerical results, we obtain the results are in concord with Theorem 3.1.
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