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Abstract 

This paper considers the formation control of nonholonomic mobile robots. The formation problem is converted to 
the error model based on the leader-follower structure. A sliding mode controller, which is proved to be globally 
finite-time stable by Lyapunov stability theory, is presented in this study. In addition, a continuous reaching law is 
designed to reduce the chattering which caused by the computation time delays and limitations of control. 
Simulation results verify the feasibility and effectiveness of the control strategy. 
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1. Introduction 

Formation control of differential-drive mobile robots 
have been widely researched in recent years. The 
mobile robots are supposed to maintain the desired 
geometric configuration in lots of different situations 
including personnel rescue, logistics transportation, 
military affairs and environmental exploration. Various 
formation control strategies have been proposed, such as 
feedback linearization1, backstepping2, sliding-mode 
control3 and sorts of intelligent control method. In Ref.3, 
the kinematic model and the dynamic model were both 
considered, then a sliding mode controller was proposed 
to deal with model uncertainties and disturbances, 
furthermore, the voltage inputs of driving motors were 
taken as control inputs, which are more realistic than the 
velocity. Basic controller based on backstepping method 
was presented in Ref.4, a bioinspired neurodynamics 
based approach was further developed to solve the 
impractical velocity jumps problem. In Ref.5, a 
controller with time-varying parameters which were 

designed to limited control inputs, was presented by 
Lyapunov theory, and geometric analysis contributed to 
the designment of optimal feedback functions which 
made the controller more effective. 

This paper mainly focuses on the formation control 
of nonholonomic mobile robots with sliding mode. The 
formation problem is proposed with leader-follower 
setup, which is used to deduce the error model. Then, a 
simple sliding mode surface is chose to design control 
law. And a continuous reaching law is presented to 
reduce the chattering. Moreover, the formation error 
model is proved to be globally finite-time stable. 
Comparing with existing results, this paper primarily 
contributes to the novel solution of the formation 
control with sliding mode. 

The structure of the rest paper is organized as 
follows. The section 2 introduces leader-follower 
system and the formation error model. In the section 3, 
the sliding mode controller is designed with a 
continuous reaching law. Simulation results are 
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presented to show the validity of the control law in the 
section 4. In the end, the section 5 summarizes the 
whole paper and draws the conclusion. 

2. Problem Statement 

2.1. Kinematic model of nonholonomic mobile 
robot 

In this paper, the differential-drive mobile robot is 
considered as the research object, which is subject to 
nonholonomic constraint (1).  

As shown in figure 1, let Lv  and Rv  be the 
velocities of the left and right driving wheel. The 
control inputs are usually taken as the linear speed v
and the rotational angular velocity ω . The relation 

between control inputs and driving wheels can be 
expressed as (2). In practical systems, control inputs of 
mobile robots are bounded. 

    cos sin 0y xθ θ− =   (1) 

 ( ) / 2,  ( ) / 2L R R Lv v v v vω ρ= + = −  (2) 

 = cos ,    sin ,   x v y vθ θ θ ω= =    (3) 

where ( , )x y  are the robot position and θ  is the robot 
orientation. Moreover, the kinematic of the mobile robot 
can be expressed as equation (3). 

2.2. Leader-follower system 

In the figure 2, leader-follower formation structure is 
presented in Cartesian coordinates. The nonholonomic 
mobile robot lR  is treated as the leader. The center of 
the leader ( , , )l l l lC x y θ  describes the position and the 
orientation of the leader in the world frame. And ( , )l lv ω  
are control inputs. The follower is the robot fR . The 
center of the robot ( , , )f f f fC x y θ  and inputs ( , )f fv ω  
have the analogous definitions like the leader. Assume 

that the distance between the point ( , , )f of of fO x y θ  and 
lC  is d . The relation can be presented as (4)  

 cos
sin

of f f

of f f

x x d
y y d

θ

θ

= +

= +
 (4) 

Differentiating the above equations leads to 

 
cos sin
sin cos

of f f f f

of f f f f

x v d
y v d

θ ω θ

θ ω θ

= −

= +




 (5) 

The desired geometric shape can be denoted by 

coordinate representation. The expected position of the 
follower should be expressed as ( , )d dx y in the 
coordinate system of the leader. And the real position 

( , )d c cC x y  in world frame can be deduced as equation 
(6). 

 cos sin
sin cos

c l l l d

c l l l d

x x x
y y y

θ θ
θ θ

−      
= +      

      
 (6) 

( , )d dx y  are considered as constants, and differentiating 
both side of (6) will refer to 

 cos sin
sin cos

c l l l d l

c l l d l

x v y
y x

θ θ ω
θ θ ω

− −    
=    

    




 (7) 

We can define the formation errors as the Eq.  (8). 

 
cos sin
sin cos

f f c ofe

f f c ofe

x xx
y yy

θ θ
θ θ

−   
=     − −    

 (8) 

Moreover, the angular difference between the leader 
and the follower is remarked as (9). 

 ,    l f l fβ θ θ β ω ω= − = −  (9) 

 

Fig. 1. The configuration of a two-wheeled mobile robot. 

 

Fig. 2. Leader-follower formation structure 
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Combining the equations from (4) to (7) and 
differentiating both sides of (8), formation error model 
can be expressed as 

 
( ) cos sin

( ) ( )sin cos
e f f e l d l d l

e e f l d l d l

x v y v y x
y d x v y x

ω ω β ω β

ω ω β ω β

= − + + − −

= − + + − +




 (10) 

The destination of control law design is to find the 
appropriate control inputs ( , )f fv ω  to meet the desired 
outcome: 

 lim 0,  lim 0,  ( 0)e et t
x y β σ σ

→∞ →∞
→ → < >  (11) 

3. Sliding-Mode Controller Design 

3.1. Sliding surface design 

The most significant process of sliding mode control is 
to choose the suitable sliding surface. Here, we design 
the sliding surface which ensures that the formation 
error will converge to zero when the system trajectory 
lies on the sliding surface (12).  

 1

2

cos sin
sin cos

e e

e e

x ys
s

x ys
β β
β β
+  

= =    − +   
 (12) 

Let 0.5 TV s s= , thus we can deduce 2 2
1 20.5( )V s s= +  

2 20.5( )e ex y= +  from equation (12), which indicates that 
if 1 20,  0s s→ → , the 0,  0e ex y→ → will hold. Hence, 
when the sliding surface converges to zero, the 
geometric shapes of the robot formation will be 
established. 

Differentiating the formula (12) will conclude (13) 

 1 2

2 1

cos sin
sin cos
f f l d l l

f f d l l

s v d v y s
s v d x s

β ω β ω ω

β ω β ω ω

= − − + − +

= − + −




 (13) 

Furthermore, the formation controller can be simply 
written as: 

1 2

1 2

( ) cos sin cos sin
[( )sin cos sin cos ] /

f l d l d l e l

f l d l d l e l

v v y x y s s
v y x x s s d

ω β ω β ω β β

ω ω β ω β ω β β

= − − + − +

= − + − − −

 

 
 (14) 

3.2. Controller design with the reaching law 

In this paper, a continuous reaching law is adopted to 
make each state reaching the sliding surface. Comparing 
with the switching function of general reaching law, a 
saturation function is taken in order to reduce the 
chattering which caused by the computation time delays 
and limitations of control. The reaching law is as follow: 

 ( )s s kf sε= − −  (15) 

Here, ( )f s  is given as (16) and sgn( )s is a sign function. 
Besides, 1 2 1 2 1 2( , ) ,  ( , ) ,  ( , ) ,  0T T Tk k kε ε ε α α α ϕ= = = >  
and 1 2 1 2 1 2,  ,  ,  0,  0< , 1k kε ε α α> < .  

 
sgn( )    

 ( )
/         

i

i

i i i
i

i i i

s s if s
f s

s s if s

α

α

ϕ

ϕ ϕ

 ≤= 
>

 (16) 

Thus, we can get the sliding mode controller (17) 
from equation (12), (14) and (15). 

 
1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

( ) cos sin
       ( ( )) cos ( ( ))sin

1 [( )sin cos

       ( ( ))sin ( ( )) cos ]

f l d l d l e l

f l d l d l e l

v v y x y
s k f x s k f x

v y x x
d

s k f x s k f x

ω β ω β ω

e β e β

ω ω β ω β ω

e β e β

= − − + +

+ − +

= − + − +

+ + +

(17) 

Theorem 1. Consider the formation error system (10). 
Using the control law (17), the sliding surface (12) will 
converge to zero in finite time rT , and 0,  0e ex y→ →  
as rt T= . 
 
Proof. Choose the Lyapunov function as 2 / 2i iV s=
( 1, 2)i = . It is easy to refer to 

 2 ( )i i i i i i i i iV s s s k f s sε= = − −   (18) 

Case1: if is ϕ< , the equation (18) will be converted to
(1 )/2 (1 )/22 2 i i

i i i i iV V k Vα αε + += − − . Define (0)iV V= at 0t = . 
By solving differential equation, we can deduce formula  

 
1 1 1 1

(1 )2 2 2 22 (2 (0))
i i i i

i t
i i

k kV V e
α α α α

α e

ee

− − − −
− −= − + +  (19) 

Let 0iV = ; the reaching time can be expressed as 

 

1 1
2 2

1
2

2 (0)1 ln( )
(1 )

2

i i

i

i

ri
i

k V
T

k

α α

α
ε

α ε

− −

−

+
=

−
 (20) 

Therefore, ( 1, 2)is i = will converge to zero at rt T= =
max( ) ( 1, 2)riT i = and 0,  0e ex y→ →  as rt T= . 

Case 2: if is ϕ> , the equation (18) can be presented as 
the formula (21). 

 22 0i
i i i i iV s k s αε ϕ= − − <  (21) 

Consequently, there must be a rT ϕ which makes is ϕ→ . 
Thus, formation error model will be globally finite time 
stable.  
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Theorem 2. Consider the equation (9) with the control 
law (17). β  will be bounded, if the velocity of the 
leader 00 ,   at 0lv const tβ π< < < = and the 
boundedness of the angular velocity lω  hold. 
 
Proof. Combining the formula (9) with the control law, 
we can obtain the equation (22). 

2
1 1 1 1 1 2 2 2 2 2

( sin ) / ( )
1( ) [ sin cos

( ( )) cos ( ( ) )sin ]

l

l d l d l e l

v d t

t y x x
d

s k f s s k f s α

β β f

f ω ω β ω β ω

e β e β

= − +

= − − + − +

+ + +



 (22) 

The nominal system can be given as ( sin ) /lv dβ β= −

at 0φ = . Select the Lyapunov function as 1 cosVβ β= − . 
So we can get 2( sin ) / 0lV v dβ β= − ≤ and Vβ is non-
increasing. 0  at 0tβ π< = , there must exist a positive 
constant δ which meets 0 [ , ]β π δ π δ∈ − + − . Then, Vβ  

[0, 2 ), ( ) [ , ]tδ β π δ π δ∈ − ∈ − + −  and ( / )lV v d Vβ βd≤ − . 
Besides, 22sin ( / 2)Vβ β= , it is easy to obtain 2 22 /β π

2 / 2 at ( , )Vβ β β π π< < ∈ − . Thus, the nominal system 
is exponentially stable using the Lyapunov method. 
Obviously, 1 2, , , ,sin  and cosl ex s sω β β are bounded, 
which can be used to deduce the conclusion that ( )tφ  is 
bounded. Therefore, in the system (21), β is bounded 
by using the stability theory of perturbed systems.  

4. Simulation Results 

 

Fig. 3. Formation process and formation errors. 

 

Fig. 4. The sliding surface and inputs of followers. 

Three robots are expected to keep a triangle formation 
and the expected formation shapes are designed as 1dx =

2 1 31 ,  0.5 ,  0.5d d dx m y m y m= − = = − . The movement of 
the leader robot is set as the circular motion with

1 / ,  /12 /l lv m s rad sω π= = , and the initial poses of 
three robots are (0, 0, π/2), (−3, −2, 0) and (2.5, −3, 
−π/2). Moreover, Controller (16) is used with

1 2= 5,ε ε =

1 2 1 2 2 3 = 7,  1/ 3,  5,  0.25 .k k d d mα α ϕ= = = = = = The 
control inputs are limited as

3 / , / 2 /f fv m s rad sω π≤ ≤ . 
The formation error is denoted as 2 2 ,e eE x y= + . The 
simulation results are presented in Fig.3 and Fig.4. 

5. Conclusion 

In this paper, the formation control problem of the 
nonholonomic mobile robot has been solved. A 
controller with sliding mode is proposed using a 
continuous reaching law. The simulation results show 
that the control law can guarantee great formation 
performance and the specified geometrical shapes of 
multi-mobile robots will be achieved in finite time. 
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