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1. Introduction

Recurrence relations for moments of order statistics has been an old topic of study. Several iden-
tities have been derived which relate higher order moments of order statistics with corresponding
lower order moments, see for example Cole [11], Arnold et al. [1] and David and Nagaraja [12].
Since emergence of record statistics by Chandler [10], various authors have studied distributions of
records. Various authors have studied recurrence relations between moments of records for certain
probability distributions, see for example Ahsanullah [2], Balakrishnan and Ahsanullah [6], Balakr-
ishnan et al. [7], Bieniek and Szynal [9], Pawlas and Szynal [17] among others. A comprehensive
review of record statistics can be found in Ahsanullah [3].
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Kamps [13] has introduced generalized order statistics (gos) as a unified model for ordered
random variables. The gos are defined as under:

Suppose a random sample of size n is available from the distribution F (x) then
the quantities Xr:n,m̃,k are the Generalized Order Statistics (GOS) from the distribu-
tion F (x), if their joint density function is of the form

f1,...,n:n,m̃,k (x1, ...,xn)=k

(
n−1

∏
j=1

γ j

)
{1−F (xn)}k−1 f (xn)

×

[
n−1

∏
i=1
{1−F (xi)}mi f (xi)

]
; (1)

where and is defined on the cone F−1 (0) < x1 ≤ x2 ≤ ... ≤ xn < F−1 (1). If m1 =

m2 = · · ·=mn−1 =m, then GOS are denoted as Xr:n,m,k, where r is a positive integer
such that 1≤ r ≤ n.

The marginal density function of rth gos is given by Kamps [13] as:

fr:n,m,k (x) =
Cr−1

(r−1)!
f (x){1−F (x)}γr−1 gr−1

m [F (x)] , (2)

where Cr−1 = ∏
r
j=1 γ j, γ j = k+(n− j)(m+1) and

hm (x) =
{
− 1

m+1(1− x)m+1; m 6=−1
− ln(1− x) ; m =−1

; x ∈ [0,1)

gm (x) = hm (x)−hm (0)

=

{
1

m+1

[
1− (1− x)m+1

]
; m 6=−1

− ln(1− x) ; m =−1
; x ∈ [0,1) .

Further the joint density function of two gos Xr:n,m,k and Xs:n,m,k for r < s is given by Kamps [13] as

fr,s:n,m,k (x1,x2)=
Cs−1

(r−1)!(s− r−1)!
f (x1) f (x2)

×{1−F (x1)}m gr−1
m {F (x1)}

×{1−F (x2)}γs−1 [hm {F (x2)}−hm {F (x1)}]s−r−1 . (3)

The gos reduces to order statistics for m = 0 and k = 1 and it reduces to record statistics for m =−1.
Several authors have studied gos for various distributions in context of recurrence relations for
moments of gos. Athar and Islam [4] have provided recurrence relations for moments of gos for a
general class of distributions. Athar et al. [5] have studied recurrence relations for moments for gos
for Marshall-Olkin extended Weibull distribution and have provided a characterization. Kumar [15]
have studied recurrence relations for moments of Kumaraswamy distribution. Mohsin et al. [16]
have provided recurrence relations for moments of gos for Rayleigh distribution.

The gos provide a unified model for random variables arranged in increasing order. Burkschat
et al. [8] have introduced lower or dual generalized order (dgos) statistics as a unified model for
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random variables arranged in decreasing order of magnitude. Various authors have studied the recur-
rence relations for moments of dgos for certain distributions. Pawlas and Szynal [18] have obtained
the recurrence relations for moments of dgos for Inverted Weibull distribution with density

f (x) =
αβ

xβ+1 exp
(
− α

xβ

)
. (4)

Kotb et al. [14] have studied recurrence relations for moments of dgos for a general class of inverted
distributions defined as

f (x) =
θλ ′ (x)
λ 2 (x)

exp
{
− θ

λ (x)

}
; a < x < b, (5)

where λ (x) is some function of random variable X . The inverted class of distributions given in (5)
provide Inverted Weibull distribution as a special case when λ (x) = xβ . Kotb et al. [14] have also
shown that the recurrence relations for moments of dgos for Inverted Weibull distribution can be
obtained from those of general class of inverted distributions.

It is of interest to note that the recurrence relations for moments of gos have not been studied
in context of inverted distributions. In this paper we study the recurrence relations for moments of
gos for Inverted Weibull distribution and provide certain special cases. These relations are studied
in the following sections

2. Relation for Single Moments

Athar and Islam [4] have provided following general expression for relation between single
moments of gos

µ
p
r:n,m,k−µ

p
r−1:n,m,k =

pCr−2

(r−1)!

∫
∞

−∞

xp−1 {1−F (x)}γr gr−1
m [F (x)]dx, (6)

where µ
p
r:n,m,k = E

(
X p

r:n,m,k

)
etc. It is to be observed that pth moment of Inverted Weibull distribu-

tion exist when β > p. We will, therefore, obtain the recurrence relations for single moments when
β > p. We will use expression (6) to obtain relation for single moments of gos for Inverted Weibull
distribution. For this consider the density function of Inverted Weibull distribution given in (4). The
distribution function corresponding to (4) is

F (x) = exp
(
− α

xβ

)
.

It can be easily noted that following relation hold between density and distribution function

1−F (x) =

[
xβ+1

αβ

{
exp
(

α

xβ

)
−1
}]

f (x) . (7)

We will use relation (7) to derive the recurrence relation for single moments of gos for Inverted
Weibull distribution. For this consider (6) as

µ
p
r:n,m,k−µ

p
r−1:n,m,k =

pCr−2

(r−1)!

∫
∞

−∞

xp−1 {1−F (x)}

×{1−F (x)}γr−1 gr−1
m [F (x)]dx.
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Now using (7) in above equation we have

µ
p
r:n,m,k−µ

p
r−1:n,m,k =

pCr−2

(r−1)!

∫
∞

0
xp−1

[
xβ+1

αβ

{
exp
(

α

xβ

)
−1
}

× f (x)]{1−F (x)}γr−1 gr−1
m [F (x)]dx.

or

µ
p
r:n,m,k−µ

p
r−1:n,m,k =

pCr−2

(r−1)!

∫
∞

0
xp−1 xβ+1

αβ
exp
(

α

xβ

)
f (x)

×{1−F (x)}γr−1 gr−1
m [F (x)]dx

− pCr−2

(r−1)!

∫
∞

0
xp−1 xβ+1

αβ
f (x)

×{1−F (x)}γr−1 gr−1
m [F (x)]dx

or

µ
p
r:n,m,k−µ

p
r−1:n,m,k =

p
αβγr

∑
∞

j=0
α j

j!
Cr−1

(r−1)!

∫
∞

0
xp−β ( j−1) f (x)

×{1−F (x)}γr−1 gr−1
m [F (x)]dx

− p
αβγr

Cr−1

(r−1)!

∫
∞

0
xp+β f (x)

×{1−F (x)}γr−1 gr−1
m [F (x)]dx

or

µ
p
r:n,m,k−µ

p
r−1:n,m,k =

p
αβγr

{
∑

∞

j=0
α j

j!
µ

p−β ( j−1)
r:n,m,k −µ

p+β

r:n,m,k

}
. (8)

Remark 2.1. Using m = 0 and k = 1 in (8) we obtain recurrence relation for single moments of
order statistics for Inverted Weibull distribution as

µ
p
r:n−µ

p
r−1:n =

p
αβ (n+ r−1)

{
∑

∞

j=0
α j

j!
µ

p−β ( j−1)
r:n −µ

p+β
r:n

}
. (9)

Remark 2.2. Using m =−1 in (8) we obtain recurrence relation for single moments of K−record
values for Inverted Weibull distribution as

µ
p
K(r)−µ

p
K(r−1) =

p
αβk

{
∑

∞

j=0
α j

j!
µ

p−β ( j−1)
K(r) −µ

p+β

K(r)

}
. (10)

3. Relation for Inverse Moments

In this section we derive recurrence relation for inverse moments of gos. The inverse moments of
gos are defined as

µ
−p
r:n,m,k = E

(
X−p

r:n,m,k

)
=
∫

∞

−∞

x−p fr:n,m,k (x)dx.

Journal of Statistical Theory and Applications, Vol. 16, No. 2 (June 2017) 137–149
___________________________________________________________________________________________________________

140



We consider following relation for inverse moments of gos

µ
−p
r:n,m,k−µ

−p
r−1:n,m,k =−

pCr−2

(r−1)!

∫
∞

−∞

x−p−1 {1−F (x)}γr gr−1
m [F (x)]dx,

or

µ
−p
r:n,m,k−µ

−p
r−1:n,m,k = −

pCr−2

(r−1)!

∫
∞

−∞

x−p−1 {1−F (x)}γr−1

×{1−F (x)}gr−1
m [F (x)]dx. (11)

Now using (7) in (11) we have

µ
−p
r:n,m,k−µ

−p
r−1:n,m,k = −

pCr−2

(r−1)!

∫
∞

0
x−p−1

[
xβ+1

αβ

{
exp
(

α

xβ

)
−1
}

× f (x)]{1−F (x)}γr−1 gr−1
m [F (x)]dx.

or

µ
−p
r:n,m,k−µ

−p
r−1:n,m,k = −

p
αβγr

∑
∞

j=0
α j

j!
Cr−1

(r−1)!

∫
∞

0
x−p−β ( j−1) f (x)

×{1−F (x)}γr−1 gr−1
m [F (x)]dx

+
p

αβγr

Cr−1

(r−1)!

∫
∞

0
x−p+β f (x)

×{1−F (x)}γr−1 gr−1
m [F (x)]dx

or

µ
−p
r:n,m,k−µ

−p
r−1:n,m,k =

p
αβγr

{
µ
−p+β

r:n,m,k−∑
∞

j=0
α j

j!
µ
−p−β ( j−1)
r:n,m,k

}
. (12)

Remark 3.1. Using β = 2 in (12) we have following recurrence relations for inverse moments of
gos for Inverted Rayleigh distribution

µ
−p
r:n,m,k−µ

−p
r−1:n,m,k =

p
2αγr

{
µ
−p+2
r:n,m,k−∑

∞

j=0
α j

j!
µ
−p−2 j+2
r:n,m,k

}
. (13)

Remark 3.2. Using β = 1 in (12) we have following recurrence relations for inverse moments of
gos for Inverted Exponential distribution

µ
−p
r:n,m,k−µ

−p
r−1:n,m,k =

p
αγr

{
µ
−p+1
r:n,m,k−∑

∞

j=0
α j

j!
µ
−p− j+1
r:n,m,k

}
. (14)

Remark 3.3. Using m = 0 and k = 1 in (12), following recurrence relation for inverse moments of
order statistics for Inverted Weibull distribution is obtained

µ
−p
r:n −µ

−p
r−1:n =

p
αβ (n+ r−1)

{
µ
−p+β
r:n −∑

∞

j=0
α j

j!
µ
−p−β ( j−1)
r:n

}
. (15)

Remark 3.4. Using m =−1 in (12) we have following recurrence relation for inverse moments of
K−record values for Inverted Weibull distribution

µ
−p
K(r)−µ

−p
K(r−1) =

p
αβk

{
µ
−p+β

K(r) −∑
∞

j=0
α j

j!
µ
−p−β ( j−1)
K(r)

}
. (16)
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Remark 3.5. Recurrence relations for inverse moments of order statistics and record values for
Inverted Exponential and Inverted Rayleigh distribution can be easily obtained from (15) and (16)
by using β = 2 and β = 1 respectively.

4. Relation for Product Moments

Consider the following relation, given by Athar and Islam [4], for product moments of gos for any
distribution F (x)

µ
p,q
r,s:n,m,k−µ

p,q
r,s−1:n,m,k =

qCs−2

(r−1)!(s− r−1)!

∫
∞

−∞

∫
∞

x1

xp
1xq−1

2

× f (x1){1−F (x1)}m gr−1
m {F (x1)}

×[hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs dx2dx1,

or

µ
p,q
r,s:n,m,k−µ

p,q
r,s−1:n,m,k =

qCs−2

(r−1)!(s− r−1)!

∫
∞

−∞

∫
∞

x1

xp
1xq−1

2

× f (x1){1−F (x1)}m gr−1
m {F (x1)}

× [hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs−1 {1−F (x2)}dx2dx1. (17)

Now using (7) in (19) we have following relation for product moments of gos for Inverted Weibull
distribution under the assumption that β > p and β > q.

µ
p,q
r,s:n,m,k−µ

p,q
r,s−1:n,m,k =

qCs−2

(r−1)!(s− r−1)!

∫
∞

0

∫
∞

x1

xp
1xq−1

2

× f (x1){1−F (x1)}m gr−1
m {F (x1)}

×[hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs−1

×

[
xβ+1

2
αβ

{
exp

(
α

xβ

2

)
−1

}
f (x2)

]
dx2dx1.

or

µ
p,q
r,s:n,m,k−µ

p,q
r,s−1:n,m,k =

q
αβγs

∑
∞

j=0
α j

j!
Cs−1

(r−1)!(s− r−1)!

∫
∞

0

∫
∞

x1

xp
1

×xq−β ( j−1)
2 f (x1) f (x2){1−F (x1)}m gr−1

m {F (x1)}
×[hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs−1 dx2dx1

− q
αβγs

Cs−1

(r−1)!(s− r−1)!

∫
∞

0

∫
∞

x1

xp
1xq+β

2

× f (x1) f (x2){1−F (x1)}m gr−1
m {F (x1)}

×[hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs−1 dx2dx1
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or

µ
p,q
r,s:n,m,k−µ

p,q
r,s−1:n,m,k =

q
αβγs

{
∑

∞

j=0
α j

j!
µ

p,q−β ( j−1)
r,s:n,m,k −µ

p,q+β

r,s:n,m,k

}
. (18)

Remark 4.1. Using m = 0 and k = 1 in (18) we obtain recurrence relation for product moments of
order statistics for Inverted Weibull distribution, for β > p and β > q, as

µ
p,q
r,s:n−µ

p,q
r,s−1:n =

q
α (n+ s−1)

{
∑

∞

j=0
α j

j!
µ

p,q−β ( j−1)
r,s:n −µ

p,q+β
r,s:n

}
. (19)

Remark 4.2. Using m = −1 in (18) we obtain recurrence relation for product moments of
K−record values for Inverted Weibull distribution, for β > p and β > q, as

µ
p,q
K(r,s)−µ

p,q
K(r,s−1) =

q
kαβ

{
∑

∞

j=0
α j

j!
µ

p,q−β ( j−1)
K(r,s) −µ

p,q+β

K(r,s)

}
. (20)

5. Relation for Ratio Moments

The ratio moments of gos are defined as

µ
p,−q
r,s:n,m,k = E

(
X p

r:n,m,k

Xq
s:n,m,k

)
=
∫

∞

−∞

∫
∞

x1

xp
1

xq
2

fr,s:n,m,k (x1,x2)dx2dx1.

We now derive recurrence relation for ratio moments for inverse Weibull distribution. For this con-
sider following relation for ratio moments of gos

µ
p,−q
r,s:n,m,k−µ

p,−q
r,s−1:n,m,k = −

qCs−2

(r−1)!(s− r−1)!

∫
∞

−∞

∫
∞

x1

xp
1x−q−1

2

× f (x1){1−F (x1)}m gr−1
m {F (x1)}

×[hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs dx2dx1,

or

µ
p,−q
r,s:n,m,k−µ

p,−q
r,s−1:n,m,k = −

qCs−2

(r−1)!(s− r−1)!

∫
∞

−∞

∫
∞

x1

xp
1x−q−1

2

× f (x1){1−F (x1)}m gr−1
m {F (x1)}

× [hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs−1 {1−F (x2)}dx2dx1. (21)
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Now using (7) in (21) we have following relation for ratio moments of gos for Inverted Weibull
distribution when β > p, q > β and p−q > β .

µ
p,−q
r,s:n,m,k−µ

p,−q
r,s−1:n,m,k = −

qCs−2

(r−1)!(s− r−1)!

∫
∞

0

∫
∞

x1

xp
1x−q−1

2

× f (x1){1−F (x1)}m gr−1
m {F (x1)}

×[hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs−1

×

[
xβ+1

2
αβ

{
exp

(
α

xβ

2

)
−1

}
f (x2)

]
dx2dx1.

or

µ
p,−q
r,s:n,m,k−µ

p,−q
r,s−1:n,m,k = −

q
αβγs

∑
∞

j=0
α j

j!
Cs−1

(r−1)!(s− r−1)!

∫
∞

0

∫
∞

x1

xp
1

×x−q−β ( j−1)
2 f (x1) f (x2){1−F (x1)}m gr−1

m {F (x1)}
×[hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs−1 dx2dx1

+
q

αβγs

Cs−1

(r−1)!(s− r−1)!

∫
∞

0

∫
∞

x1

xp
1x−q+β

2

× f (x1) f (x2){1−F (x1)}m gr−1
m {F (x1)}

×[hm {F (x2)}−hm {F (x1)}]s−r−1

×{1−F (x2)}γs−1 dx2dx1

or

µ
p,−q
r,s:n,m,k−µ

p,−q
r,s−1:n,m,k =

q
αβγs

{
µ

p,−q+β

r,s:n,m,k −∑
∞

j=0
α j

j!
µ

p,q−β ( j−1)
r,s:n,m,k

}
. (22)

Remark 5.1. Using m = 0 and k = 1 in (22) we have following recurrence relation for ratio
moments of order statistics for Inverted Weibull distribution as

µ
p,−q
r,s:n −µ

p,−q
r,s−1:n =

q
α (n+ s−1)

{
µ

p,−q+β
r,s:n −∑

∞

j=0
α j

j!
µ

p,−q−β ( j−1)
r,s:n

}
. (23)

Remark 5.2. Using m = −1 in (22) we obtain following recurrence relation for ratio moments of
record values for Inverted Weibull distribution as

µ
p,−q
K(r,s)−µ

p,−q
K(r,s−1) =

q
kαβ

{
µ

p,−q+β

K(r,s) −∑
∞

j=0
α j

j!
µ

p,−q−β ( j−1)
K(r,s)

}
. (24)

6. Some Characterizations

In this section we present some characterizations of the Inverse Weibull distribution based upon the
conditional moments. In order to give main theorems we first give some lemma.

Lemma 6.1. If X is an absolutely continuous random variable with cumulative distribution func-
tion F(x) and probability density function f (x) with a = sup(x|F(x) > 0) and b = inf(x|F(x) <
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1).We assume E(X) exists. If for a given x, a < x < b,

E (X |X < x) = g(x)τ (x) ,

where g(x) is a differentiable function in a, x < b, and τ(x) = f (x)/F (x), then

f (x) = cexp

{∫ (x−g/ (x)
g(x)

)
dx

}
, (25)

where c is determined by the condition 1
c =

∫ b
a f (x)dx.

Proof. Consider

g(x) =
1

f (x)

∫ x

0
u f (u)du,

then

g(x) f (x) =
∫ x

0
u f (u)du.

Differentiating both sides we have

x f (x) = g/(x) f (x)+g(x) f /(x),

which on simplification becomes

f /(x)
f (x)

=
x−g/(x)

g(x)
.

Integrating both sides with respect to x we have

f (x) = cexp

{∫ (x−g/ (x)
g(x)

)
dx

}
,

where c is determined such that 1
c = 1.

Lemma 6.2. Suppose that X is an absolutely continuous random variable with cdf F(x) with
F (0) = 0 and F (x) > 0 for all x > 0. We assume that the pdf of X as f (x) and f / (x) exists for
all x > 0. For a continuous function g(x) on 0 < x < ∞ with finite E {g(x)} such that

E {g(X) |X ≥ x}= h(x)r (x)

where h(x) is a differential function in x > 0 and r (x) = f (x)/{1−F (x)} , then

f (x) = cexp
{
−
∫ (g(x)+h′(x)

h(x)

)}
dx (26)

and c is determined by the condition
∫

∞

0 f (x)dx = 1.
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Proof. Consider ∫
∞

x
g(u) f (u)du = f (x)h(x)

Differentiating the above expression, we obtain

−g(x) f (x) = f (x)h/ (x)+ f / (x)h(x) .

Simplifying, we have

f /(x)
f (x)

=−g(x)+h′(x)
h(x)

.

Integrating both sides of the above equation we obtain (26) and c is determined by the condition∫
∞

0 f (x)dx = 1.

We now give the main theorems.

Theorem 6.1. If X is an absolutely continuous positive random variable with cumulative distribu-
tion function G(x) and probability density function g(x) such that E(X) exists. Then E(X |X ≤ x) =
h(x)τ(x), where τ(x) = g(x)/G(x)

h(x) =
xβ+2

αβ
− xβ+1

α
1− 1

β β 2
xβ+1e−

α

xβ Γ α

xβ

(
− 1

β

)
(27)

and

Γx(α) =
∫

∞

x
uα−1e−u du ,α > 0,β > 1

holds if and only if

g(x) =
αβ

xβ+1 exp
(
− α

xβ

)
, x > 0, α > 0 and β > 0.

Proof. We first prove the necessity part. For this consider

g(x) =
αβ

xβ+1 exp
(
− α

xβ

)
, (4)

then

h(x) =
1

g(x)

∫ x

0
u f (u)du =

xβ+2

αβ
− xβ+1

αβ
e

α

xβ

∫ x

0
e−

α

uβ du

=
xβ+2

αβ
− xβ+1

α
1− 1

β β 2
e

α

xβ Γ α

xβ

(
− 1

β

)
,

which is (27).
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Now for sufficient condition we need to prove that (27) implies (4). For this consider (27) as

h(x) =
xβ+2

αβ
− xβ+1

α
1− 1

β β 2
eαx−β

Γ α

xβ

(
− 1

β

)
.

Differentiating above equation with respect to x we have

h′(x) = β +2
αβ

xβ+1− xβ+1

αβ
−Γ α

xβ

(
− 1

β

)
d
dx

(
xβ+1

α
1− 1

β β 2
eαx−β

)

=
β +1
αβ

xβ+1−Γ α

xβ

(
− 1

β

){
xβ+1

α
1− 1

β β 2
eαx−β

}{
β +1

x
− αβ

xβ+1

}

= x−
(

αβ

xβ+1 −
β +1

x

){
xβ+2

αβ
− xβ+1

α
1− 1

β β 2
eαx−β

Γ α

xβ

(
− 1

β

)}
or

h′(x) = x−
(

αβ

xβ+1 −
β +1

x

)
h(x) .

Thus we have

x−h′(x)
h(x)

=

(
αβ

xβ+1 −
β +1

x

)
.

Hence using the Lemma we have

g/ (x)
g(x)

=

(
αβ

xβ+1 −
β +1

x

)
.

Integrating we have

g(x) =
c

xβ+1 e−
α

xβ ,

where c is determined by using

1
c
=
∫

∞

0

c
xβ+1 eαx−β

dx =
1

αβ
,

hence

g(x) =
αβ

xβ+1 exp
(
− α

xβ

)
,

as asserted.

Theorem 6.2. Suppose that X is an absolutely continuous random variable with cdf G(x) such that
G(0) = 0 and G(x)> 0 for all x > 0. We assume that the pdf of X and g(x) and g/ (x) exists for all
x > 0 and E (X) also exists. Then E (X |X ≥ x) = h0 (x)τ (x) , where τ (x) = g(x)/ [1−G(x)],

h0(x) =
α

1+ 1
β

β 2 exp
(

α

xβ

)
Γ

(
α

xβ
,1
)
, β > 1

and Γ(x,n) =
∫ x

0 un−1e−udu, holds if and only if
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g(x) =
αβ

xβ+1 exp
(
− α

xβ

)
, x≥ 0, α > 0 and β > 1.

Proof. We have

g(x)h0(x) =
∫

∞

x
u

αβ

uβ+1 exp
(
− α

uβ

)
du = α

1+ 1
β Γ

(
α

xβ
,1− 1

β

)
, β > 1.

Thus

h0(x) =
α

1+ 1
β

β
exp
(

α

xβ

)
Γ

(
α

xβ
,1− 1

β

)
.

Now

h′0(x) = −x− α
1+ 1

β x1+β

β
exp
(

α

xβ

)
Γ

(
α

xβ
,1− 1

β

)(
−1+β

x
+

αβ

x1+β

)
= −x−h0(x)

(
−1+β

x
− αβ

x1+β

)
.

Thus

−
x+h′0(x)

h0(x)
=−1+β

x
+

αβ

x1+β

By Lemma 3, we have

g′(x)
g(x)

=−1+β

x
+

αβ

x1+β

Integrating both sides of the above equation with respect to x, we obtain

g(x) = cx1+β exp
(
− α

xβ

)
,

where c is a constant and is determined by using the condition
∫

∞

0 g(x)dx = 1. Using the value of c
we have

g(x) =
αβ

xβ+1 exp
(
− α

xβ

)
, x≥ 0, α > 0 and β > 1,

as asserted.

7. Conclusion

In this paper we have presented the recurrence relations for single, inverse, product and ratio
moments of gos when sample is available from Inverse Weibull distribution alongside a character-
ization of the distribution in terms of conditional moments. These relations provide corresponding
relations for single and product moments of order and record statistics as special case. The relations
have been used to obtain recurrence relations for single and product moments of gos for Inverse
Exponential and Inverse Rayleigh distribution.
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