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Abstract. (Aim) Currently, scholars tend to use computer vision approaches to implement multiple 

sclerosis (MS) identification. (Method) In this study, we proposed a novel MS slice identification 

system, based on Haar wavelet transform, principal component analysis, and logistic regression. 

(Result) Simulation results showed the accuracies of our method using 2-level, 3-level, and 4-level 

decomposition are 83.25±1.62%, 89.72±1.18%, and 87.65±1.79%, respectively. (Conclusion) Our 

method with 3-level decomposition achieved the best. 

1. Background 

Multiple sclerosis (MS) is a progressive disease that affects both brain and spinal cord [1]. Early 

symptoms are composed of tingling, weakness, blurred version, numbness, etc. [2]. The traditional 

MRI scanning based identification may meet with the “normal-appearing white matter” problem. 

Hence, it is necessary to develop new methods to identify MS plaques. 

Traditionally, scholars have proposed many computer vision methods [3-5] in identify abnormal 

brain diseases [6-20], including MS slice identification. For example, Zhou (2016) [21].used 

stationary wavelet entropy, combined with several machine learning methods. Zhan and Chen (2016) 

[22] used biorthogonal wavelet transform and logistic regression. Karaca (2017) [23] used convex 

combination of infinite kernels. 

Nevertheless, those methods are too complicated, and their models are difficult to train. In this 

study, we presented a novel and simple system, which was based on Haar wavelet transform, 

principle component, and logistic regression. 

2. Materials and Methods 

Thirty-four multiple sclerosis patients and thirty-three healthy subjects were enrolled from China 

local hospitals from 2013. Experienced radiologists were instructed to select the slice with MS 

plaques from the 34 patients, and select corresponding slices from 33 healthy subjects. In total, we 

selected 141 slices from MS patients and 148 slices from healthy controls. 

Our method contains three-stages. In the first stage, Haar wavelet [24] was chosen to transform the 

brain slices from spatial domain to wavelet domain [25-31]. The mother wavelet Haar wavelet λ(b) is 

defined with the form of  
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Here b denotes the spatial axis: either horizontal or vertical. The scaling function θ(b) is defined 

as: 
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We chose to use a two-level Haar wavelet transform. 

In the second stage, principle component was used to reduce the wavelet coefficients to only cover 

the threshold (THR) of total variances. We here set THR to 95%. 

In the third stage, logistic regression (LR) [32] was employed to be the classifier. The logistic 

regression is simpler and easier to train than multilayer perceptron [33-36], probabilistic neural 

network [37], convolutional neural network [38], support vector machine [39-43], etc. In total, the 

diagram of our method is depicted in Figure 1.  

 
Figure 1. Diagram of proposed method 

3. Experiments Results and Discussions 

We measured the classified performance by the indicator of “accuracy”, which is defined as the 

corrected identified number divided by the total sample number. Ten times of ten folds of cross 

validation was performed. The results were listed in Table 1, Table 2, and  

 

 

Table 3. The accuracies of 2-level, 3-level, and 4-level decomposition are 83.25±1.62%, 

89.72±1.18%, and 87.65±1.79%, respectively. Hence, the 3-level achieves the best performance. 

Table 1. Accuracy of our method (2-level decomposition) 

Run F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total 

R1 86.21 90.00 79.31 86.21 86.21 82.76 89.66 82.14 82.76 85.71 85.12 

R2 80.00 82.14 82.76 86.21 89.66 93.10 82.76 75.86 82.76 85.71 84.08 

R3 79.31 93.10 82.14 93.33 75.86 86.21 89.66 79.31 78.57 86.21 84.43 

R4 75.00 79.31 75.86 82.76 75.86 79.31 82.76 82.76 85.71 83.33 80.28 

R5 79.31 82.14 93.10 89.66 89.66 82.14 83.33 82.76 86.21 82.76 85.12 

R6 82.76 82.14 82.76 82.14 86.21 89.66 86.21 65.52 83.33 82.76 82.35 

R7 86.21 89.66 79.31 86.21 75.86 85.71 82.76 86.21 79.31 82.76 83.39 

R8 82.76 85.71 86.21 75.86 82.76 79.31 75.86 82.76 82.76 82.76 81.66 

R9 79.31 86.21 85.71 89.29 82.76 79.31 86.21 86.67 82.76 82.76 84.08 

R10 89.29 79.31 79.31 79.31 85.71 80.00 93.10 75.86 86.21 72.41 82.01 

Avr           83.25±1.62 

Table 2. Accuracy of our method (3-level decomposition) 

Run F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total 

R1 96.55 86.21 96.55 96.43 96.67 86.21 86.21 89.29 96.55 75.86 90.66 

R2 93.10 93.10 93.10 82.76 93.10 89.66 86.21 89.66 89.66 92.86 90.31 

R3 86.21 86.21 89.66 90.00 93.10 89.29 93.10 86.21 89.66 89.29 89.27 

R4 85.71 93.10 78.57 89.66 96.55 96.55 75.86 96.55 86.21 93.33 89.27 

R5 93.10 93.10 96.43 89.66 89.66 89.66 89.66 89.66 93.10 93.10 91.70 

R6 86.21 89.66 93.10 89.66 93.10 92.86 89.66 89.29 90.00 93.10 90.66 

R7 89.66 85.71 89.66 89.66 86.21 82.76 86.21 89.66 93.10 89.66 88.24 

R8 93.10 89.66 86.21 92.86 86.21 96.55 96.67 79.31 89.29 93.10 90.31 

R9 82.76 82.14 89.66 86.21 82.76 89.66 93.10 93.10 93.10 89.66 88.24 

R10 89.29 86.21 89.29 89.66 89.66 83.33 89.66 89.66 86.21 93.10 88.58 

Avr           89.72±1.18 
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Table 3. Accuracy of our method (4-level decomposition) 

Run F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total 

R1 82.76 86.21 89.66 82.14 80.00 89.66 89.66 85.71 89.66 89.66 86.51 

R2 86.21 86.21 86.21 86.21 86.21 85.71 82.76 89.66 89.66 89.66 86.85 

R3 82.76 85.71 89.66 89.29 90.00 86.21 86.21 79.31 79.31 86.21 85.47 

R4 86.21 86.21 78.57 89.66 85.71 86.21 93.10 79.31 82.76 90.00 85.81 

R5 93.10 78.57 89.66 86.21 92.86 86.21 86.67 93.10 86.21 89.66 88.24 

R6 86.21 89.66 89.29 86.21 82.76 89.66 89.66 93.10 90.00 89.29 88.58 

R7 86.21 93.10 93.10 89.29 82.76 85.71 86.21 93.10 90.00 89.66 88.93 

R8 89.29 93.10 89.29 86.21 93.10 93.10 86.21 89.66 89.66 93.33 90.31 

R9 85.71 86.21 86.21 89.66 89.66 83.33 86.21 85.71 79.31 86.21 85.81 

R10 93.10 86.21 89.29 89.66 86.67 86.21 93.10 96.55 89.66 89.29 89.97 

Avr           87.65±1.79 

4. Conclusion and Future Research 

In this study, our team presented a novel multiple-sclerosis slice identification method, based on 

Haar wavelet transform, principal component analysis, and logistic regression. The simulation results 

showed 3-level Haar decomposition performed the best. 
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