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Abstract. By applying the novel method, some sufficient conditions are established for the existence 
and global exponential stability of anti-periodic solutions for a kind of fuzzy Cohen-Grossberg neural 

networks on time scales. Moreover an example is given to illustrate our results. 

1. Introduction 

Over the past few years, Cohen and Grossberg neural networks (CGNNs) [1] have been 
extensively studied and applied in many different fields such as associative memory, signal 

processing and some optimization problems. In such applications, it is of prime importance to ensure 

that the designed neural networks are stable [2]. In practice, due to the finite speeds of the switching 

and transmission of signals, time delays do exist in a working network and thus should be 

incorporated into the model equation.  The dynamical behaviors, such as, the existence and stability 

of equilibrium point, periodic and almost periodic solutions, for CGNNs have been investigated for 

the sake of theoretical interest as well as application considerations.(see for example Refs. [3-10] and 

the references therein). 

 In this paper, we would like to integrate fuzzy operations into Cohen-Grossberg neural networks. 

Speaking of fuzzy operations, Yang and Yang [13] first introduced fuzzy cellular neural networks 

(FCNNs) combining those operations with cellular neural networks. So far researchers have founded 
that FCNNs are useful in image processing. Some results   have been reported on dynamical behaviors 

including the existence and stability of equilibrium, periodic solution for FCNNs [14-18]. 

 In contrast, however, very few results are available on the existence and exponential stability of 

anti-periodic solutions for fuzzy Cohen-Grossberg neural networks (FCGNNs).Arising from 

problems in applied sciences, the existence of anti-periodic solutions plays a key role in characterizing 

the behavior of nonlinear differential equations (see [19-24]). Moreover, both continuous and discrete 

systems are very important in implementing and applications. But it is troublesome to study the 

existence of anti-periodic solutions for discrete and continuous systems, respectively. Therefore it is 

meaningful to study FCGNNs on time scales, which was initiated by Hilger [25] in order to unify 

continuous and discrete systems.  
Motivated by the above discussions, in this paper, we consider the following FCGNNs on time 

scales. 
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  where t ,  is an  -periodic time scale which has the subspace  topology inherited from the 

standard topology on . n corresponds to the number of units in the neural networks.  For 

1,2, ,i n , ( )ix t  corresponds to  the state of the i th neuron. ( )jf  ,  ( )jg    are signal transmission 

functions. ( )ij t  corresponds to the transmission delay along the axon of the j th unit from the i th 

unit and satisfies 0 ( )ij t   (  is a constant). ( ( )) 0i ia x t    represents an amplification function at 

time t  . ( ( ))i ib x t is an appropriately behaved function at time t ; ( )ijc t  represents the elements of the 

feedback template. ( )iI t  is external input to the i th unit. ( )ij t , ( )ij t are elements of fuzzy feedback 

MIN template and fuzzy feedback MAX template, respectively;   and   denote the fuzzy AND and 

fuzzy OR operation, respectively.       

  The main aim of this article is to establish some sufficient conditions for the existence and 

exponential stability of anti periodic solutions of (1). The organization of this paper is as follows. In 

Section 2, we introduce some definitions and lemmas. In Section 3, we establish sufficient conditions 

for the existence and exponential stability of the anti-periodic solutions of system (1). In Section 4,  

an example is given to demonstrate the effectiveness of our results. Conclusions are drawn in Section 

5. 

2. Preliminaries 

 In this section, we shall first recall some basic definitions, lemmas which are used in what 

follows. 

 Let  be a nonempty closed subset (time scale) of . The forward and backward jump operators 

, :    and the graininess :   are defined, respectively, by ( ) inf{ : },t s s t     

( ) sup{ : },t s s t     ( ) ( )t t t   . A point t  is called left-dense if inft   and ( )t t  , 

left-scattered if ( )t t  ,right-dense if  supt  and ( )t t  , and right-scattered if ( )t t  . If 

has a left-scattered  maximum m , then  \{ }k m , otherwise 
k  . If  has a right-scattered 

minimum m , then \{ }k m . otherwise k  .
 

A function :f R  is right-dense continuous provided it is continuous at right-dense point in 

 and its left-side limits exist at left-dense points in . If f  is continuous at each right-dense point 

and each left-dense point, then f  is said to be a continuous function on . 

For :y   and 
kt , we define the delta derivative of ( ), ( )y t y t

 to be the number (if exists) 

with the property that for given 0  , there exists a neighborhood U  of t  such that 

| [ ( ( )) ( )] ( )[ ( ) ( )] | | ( ) |y t y s y t t y s t s         for all s U . If y is continuous, then y  is right-

dense continuous, and y  is delta differentiable at t , then y is continuous at t  . Let y be right-dense 

continuous. If ( ) ( )Y t y t  , then we define the delta integral by ( ) ( ) ( )
t

a
y s ds Y t Y a  .

 

Definition 2.1 [27]   If ,supa   and f is rd-continuous on [0, ) , then we define the  

improper integral by ( ) lim ( )
b

a ab
f t t f t t




    .  

Provided this limit exists, and we say that the improper integral converges in this case. If this limit 

does not exist, then we say that the improper integral diverges. 

 Definition 2.2 [28]  For each t , let N  be a neighborhood of t , then, for [ , )n

rdV C   . 

Define ( , ( ))D V t x t 
 to mean that, given 0  , there exists a right neighborhood N N   of t  

such that 

( ( , ( ( ))) ( , ( ( ))) ( , ) ( , ( ))
( , ( ))

( , )

V t x t V s x t t s f t x t
D V t x t

t s

   




  
 
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for each s N , s t , where ( , ) ( )t s t s   . If t  is rd and ( , ( ))V t x t  is continuous at t , this 

reduces to 

( ( ), ( ( ))) ( , ( ( )))
( , ( ))

( )

V t x t V t x t
D V t x t

t t

  



  


 . 

is periodic if there exists 0p  such that if  Definition 2.3 [11]  We say that a time scale     

t , then t p  . For  , the least positive p  is called the period of the time scale. 

Let   be a periodic time scale with periodic p .    We say that the function :f   is 

anti-periodic if there exists a natural number n  such that np  , ( ) ( )f t f t   for all t  and 
  is the least number such that ( ) ( )f t f t  . If  , we say that f  is   anti-periodic if   is 

the least positive number such that ( ) ( )f t f t   for all t . 

  A function :r R  is called regressive if  1 ( ) ( ) 0,t r t  , for all kt . 

  If r  is regressive function, then the generalized exponential function re  is defined by 

( , ) exp{ ( ( )) }, ,
t

r
s

e t s r s t      

with the cylinder transformation 

log(1 )
, 0

( )

, 0
h

hz
h

z h

z h






 
   

 

Let , :p q   be two regressive functions, we define 

  

: ;p q p q pq    : ( )p q p q    ； :
1

p
p

p
 

  

  Lemma 2.1. [12]  Let ,p q  be regressive functions on . Then  

(i) 0( , ) 1e t s   and ( , ) 1pe t t  ;       (ii)   ( ( ), ) (1 ( ) ( )) ( , )p pe t s t p t e t s   ; 

(iii) 
( , ) ( , ) ( , )p p pe t s e s r e t r

;       (iv)  ( , ) ( , )p pe s pe s    .  

 Lemma 2.2 [11]  Assume that , :f g  are delta differentiable at  
kt , then 

  ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ( ))fg f t g t f t g t f t g t f t g t         .  

 Lemma 2.3 [12]  Assume that ( ) 0p t  , for t s , then  ( , ) 1pe t s  .  

   Lemma 2.4 [11] Assume that p  is   periodic, then ( , ) ( ( , ))n

p pe t n s e t s     for n .   

Lemma 2.5 [27]  Let f  be continuous on [ , ]a b  and delta differentiable on [ , )a b , then there 

exist , [ , )a b    such that ( )( ) ( ) ( ) ( )( )f b a f b f a f b a       .  

Lemma 2.6 [14]  Suppose x   and y  are two states of system (1),  then we have 

1 1
1

| ( ) ( ) ( ) ( ) | | ( ) || ( ) ( ) |
nn n

ij j ij j ij j j
j j

j

t g x t g y t g x g y  
 



      

 and 

  
1 1

1

| ( ) ( ) ( ) ( ) | | ( ) || ( ) ( ) |
nn n

ij j ij j ij j j
j j

j

t g x t g y t g x g y  
 



    
 

 Definition 2.4. The anti-periodic solution 1 2( ) ( ( ), ( ), , ( ))T

nx t x t x t x t     of system (1) with initial 

value 1 2( ) ( ( ), ( ), , ( ))T

nt t t t        is said to be globally exponentially stable if there exists a 

positive constant ( ) 1M M    and  0   such that, for every  ,  

( ) ( , )i ix t x Me t x      .    
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where   
[0, }[ ,0]

sup max | ( ) ( ) |i i
ts

x s x s


  

 

   .  

        For the sake of convenience, we introduce some notations 

 
1 , [0, }
max max | ( ) |ij

i j n t
t


 

  
 , 

[0, }
max | ( ) |i i

t
I I t


 ,  

[0, }
max | ( ) |ij ij

t
c c t


 ,

[0, }
max | ( ) |ij ij

t
t


 


 , 

[0, }
max | ( ) |ij ij

t
t


 


 .   

Let 
1 2( ) ( ( ), ( ), , ( )) ( , )T n

nx t x t x t x t C  ,
[0, }

1

max | ( ) |
n

i
t

i

x x t





.

 

The initial conditions associated with system (1) are of the form 

                             ( ) ( ), [ ,0]i ix t t t    ,                                                                           (2) 

where ( ), 1,2, ,i t i n   are continuous functions on [ ,0] .  

Let ( ) ( , )ix t C , ( )ix t  is said to be   anti periodic, if ( ) ( )i ix t x t   for all t , 0   is 

a constant. Denote [0, )   .Throughout this paper, we make the following assumptions 

(A1)  , , , ( , )ij ij ij ic I C   , ( ) ( )ij ijc t c t  , ( ) ( )ij ijt t   
,
, ( ) ( ),ij ijt t     

( ) ( )i iI t I t   , and ( , )ij C  ,  ( ) ( )ij ijt t    ,  where 0   is a constant, , 1,2, ,i j n . 

  (A2)   ( , )ia C  , ( ) ( )i ia u a u  , and  there exist positive constants , iia a  such that 

0 ( )i i ia a a    , 1,2, ,i n  

 (A3) ( , )ib C , ( ) ( )i ib u b u    and there exist positive constants i  such that     

| | sign( ) ( )i iu u b u   for all u , 1,2, ,i n .  

 (A4)  , ( , )j jf g C , ( ) ( )j jf u f u   , ( ) ( )j jg u g u   , (0) (0) 0j jf g  , and there exist 

, ( 1,2, , )j j j n    such that 

| ( ) ( ) | | |j j jf u f v u v   ,  | ( ) ( ) | | |j j jg u g v u v   .  

 for all ,u v , 1,2, ,j n . 

3. Main results 

In this section,  we will prove our main results of this paper. 
Lemma 3.1.  Under condition (A1)-(A4), and suppose further the following condition hold 

 (A5)  there exists a constant 0   such that 

  1

[ ( ) ] 0.
n

i i i ij j ij ij j

j

a a c     


        

Suppose that 1 2( ) ( ( ), ( ), , ( ))T

nx t x t x t x t  is a solution of (1) with initial condition 

                   ( ) ( ),i ix s s   | ( ) |ix s



 , [ ,0], 1,2, , ,s i n                                    (3) 

where 
1
max{ }i i

i n
a I

 
 . Then 

                               | ( ) | ,ix t t



  ,  1,2, ,i n .                                                 (4) 

 Proof. For any given initial condition, assumption (A4) guarantees the existence and unique of 

( )x t  , the solution to (1) in [ , )  .  By way of contradiction, assume that (4) does not hold. Then, 

there exist {1,2, , }i n ,   and 0t
  such that 

0| ( ) |ix t



 , | ( ) |ix t




 ,   0[ , )t t  ,and | ( ) |jx t




 , 0[ , )t t  , , 1,2, ,j i j n  . 

By directly computing the upper left derivative of ( )ix t , Combining with (A1)-(A5),  we can 

obtain that 
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0 0 0 0 0

1

0 | ( ) | sign( ( )){ ( ( ))[ ( ( )) ( ) ( ( ))
n

i i i i i i ij j j

j

D x t x t a x t b x t c t f x t 



   
 

0 0 0 0 0
1 1

( ) ( ( ( ))) ( ) ( ( ( ))) ( )]}
n n

ij j i ij ij j i ij i
j j

t g x t t t g x t t I t   
 

      
 

0 0 0 0 0

1

( ( ))sign( ( )) ( ( )) | ( ( )) ( ) ( ( ))
n

i i i i i i i ij j j

j

a x t x t b x t a x t c t f x t


                                                            

0 0 0 0 0 0 0 0
1 1

( ( )) ( ) ( ( ( ))) ( ( )) ( ) ( ( ( ))) ( ( )) ( ) |
n n

i i ij j i ij i i ij j i ij i i i
j j

a x t t g x t t a x t t g x t t a x t I t   
 

      
 

0 0 0 0 0

1 1

( ( ))sign( ( )) ( ( )) ( ( )) | ( ) ( ( )) ( ) (0) |
n n

i i i i i i i ij j j ij j

j j

a x t x t b x t a x t c t f x t c t f
 

    
 

0 0 0
1 1

( ( )) | ( ) ( ( ( ))) ( ) (0) |
n n

i i ij j i ij ij j
j j

a x t t g x t t t g  
 

    
 

0 0 0 0 0
1 1

( ( )) | ( ) ( ( ( ))) ( ) (0) | | ( ( )) ( ) |
n n

i i ij j i ij ij j i i i
j j

a x t t g x t t t g a x t I t  
 

     
 

  
0 0 0 0

1 1

| ( ) | | ( ) | ( ) | ( ( )) |
n n

i ij i ij ii i i j j ij j j ij i

j j

a x t a c x t a x t t a I     
 

       
 

  1

[ ( ) )]
n

i ij ij ii i j ij j i

j

a a c a I    



     

 

0,i ia I



   

 
 (A6) There exists a positive constant i  such that for all u,v R  

1 2i i i| a (u ) a ( v )| |u v |,i , , ,n
.
 

(A7) There exists a positive constant i such that for all u,v R , 

0i i i i[ a (u )b (u ) a ( v )b ( v )](u v ) ,    1 2i i i i i| a (u )b (u ) a ( v )b ( v )| |u v |,i , , ,n,      

  Lemma 3.2   Let (A1)-(A7) hold, and let 1 2

T

nx ( t ) ( x ( t ),x ( t ), ,x ( t ))     be the solution of (1) 

with initial conditions (3), suppose that  

  (A8)     -
1 1

0
n n

i i ij ij ij i i i ij j ij ij j

j j

( c ) I a ( c ( ) )
 


           


  , 1 2i , , ,n , 

Then x ( t )
 is exponentially  stable.    

 Proof. The proof is similar to Lemma 3.2 of [22]. So we omit it. 

Theorem 3.1. Suppose (A1)-(A8) hold, then (1) has an anti periodic solution x ( t )
 which is 

globally exponentially stable.  

Proof. Let 1 2

T

nx( t ) ( x ( t ),x ( t ), ,x ( t ))  be a solution of (1) with initial condition 

0i i i T ,x ( s ) ( s ),| ( s )| ,s [ , ]


     


1 2i , , ,n . 

By Lemma 3.1, the solution x( t )  is bounded and 

i T ,| x ( t )| ,t [ , ]


   


, 1 2i , , ,n . 

From (1), (A1)-(A4) and Lemma 2.1, we have 
1 1

11 1 1 1k k

i|( ) x ( t ( k ) )| ( ) x ( t ( k ) )             

11 1 1k

i i i i( ) { a ( x ( t ( k ) ))[b ( x ( t ( k ) ))           
1

1 1
n

ij j j

j

c ( t ( k ) ) f ( x ( t ( k ) ) )


      
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1
1 1 1

n

ij j j ij
j

( t ( k ) )g ( x ( t ( k ) ( t ( k ) )))


           
 

1
1 1 1 1

n

ij j j ij i
j

( t ( k ) )g ( x ( t ( k ) ( t ( k ) ))) I ( t ( k ) )]}


               
 

  

1 11 1 1 1k k

i i i ia (( ) x ( t ( k ) ))[b (( ) x ( t ( k ) ))          
 

1

1
1

1 1 1
n n

k

ij j j ij j j ij
j

j

c ( t ) f (( ) x ( t ( k ) ) ( t )g ( x ( t ( k ) ( t )))




          
 

        
1

1
n

ij j j ij i
j

( t )g ( x ( t ( k ) ( t ))) I ( t )]


      
                                                     

 (5)
 

Therefore, for any natural number 11 1k

jk,( ) x ( t ( k ) )     is the solution of (1). Then, from 

Lemma 3.2, there exists a constant 1M  ,such that 

     1

10

1 1 1k k

i i i i
i ns [ , ]

|( ) x ( t ( k ) ) ( ) x ( t k )| Me ( t k , ) sup max| x ( s ) x ( s ) |


  

             
 

                                                  
2Me ( t k , )


   

                                        

  (6)
 

where t k T   , 1 2i , , ,n .  Thus, for any natural p , we have 

1 1

0

1 1 1 1 1
p

p k k

i i i i

k

( ) x ( t ( p ) ) x ( t ) [( ) x ( t ( k ) ) ( ) x ( t k )] 



               

Then 

1 1

0

1 1 1 1 1
p

p k k

i i i i

k

|( ) x ( t ( p ) )| | x ( t )| |( ) x ( t ( k ) ) ( ) x ( t k )| 



             
        

(7)

 
In view of (6), we can choose a sufficiently large constant 0N   and a positive constant   such 

that 

    11 1 1k k K

i i|( ) x ( t ( k ) ) ( ) x ( t k )| ( e ( t , )) ,k N

            
.                      

(8) 

On any compact set of R . Together with (7) and (8), it follows that 1 p

i{( ) x ( t p )}   uniformly 

converges to a continuous function x ( t )  on any compact set of  R . 

Now, we need to prove that x ( t )
 is an anti periodic solution of (1). First ix ( t )  is   anti-periodic, 

since 
11 1 1p p

i i i i
p p

x ( t ) lim( ) x ( t p ) lim( ) x ( t ( p ) ) x ( t )  

 
              

    Next, we show that x ( t )
 is a solution of (1). Noting (1) and (5), we obtain that 

11 1p

i{(( ) x ( t ( p ) )) }       uniformly converges to  continuous function on any compact set of R . 

letting p , we have 

1
1

n n

i i i i i ij j j ij j j ij
j

j

( x ( t )) a ( x ( t ))[b ( x ( t )) c ( t ) f ( x ( t ) ) ( t )g ( x ( t ( t )))     




      
 

1

n

ij j j ij i
j

( t )g ( x ( t ( t ))) I ( t )]


     

           
  That is x ( t )

 is a solution of (1). It follows from Lemma 3.2 that x ( t )
 is exponentially stable. 

This completes the proof of Theorem 3.1. 

4. An illustrative example   

In this section, we will give an example to illustrate the feasibility and effectiveness of our results 

obtained in Section 3. 

  Example 4.1  Consider the following fuzzy Cohen-Grossberg  neural networks with time-varying 

delays 
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2 2

1
1

i i i i i ij j j ij j j ij
j

j

x ( t ) a ( x ( t ))[b ( x ( t )) c ( t ) f ( x ( t ) ) ( t )g ( x ( t ( t )))




      
 

                    

2

1
ij j j ij i

j
( t )g ( x ( t ( t ))) I ( t )],


     

  
t T   ,                                                  (9) 

 where 

1 2 1 25 5a (u ) cosu,a (u ) cosu,b (u ) b (u ) u,     
j jf (u ) g (u ) sinu,    

20 5 4ij( t ) . sin ( t )    
1 2( i, j , ) . 

 

2 2

0 09 4 0 07 4

0 06 4 0 08 4
ij

. | sin( t )| . | cos( t )|
( c ) ,

. | cos( t )| . | sin( t )|


  
  

    
2 2

0 16 4 0 14 4

0 12 4 0 08 4
ij

. | cos( t )| . | sin( t )|
( )

. | sin( t )| . | cos( t )|


  
   

   , 

2 2

0 05 4 0 04 4

0 06 4 0 06 4
ij

. | sin( t )| . | cos( t )|
( ) ,

. | cos( t )| . | sin( t )|


  
   

          
2 1

0 2 4

0 1 4
i

. sin( t )
( I )

. cos( t )


 
  

  , 

 then, we have  

1 2 1 26 4a a ,a a ,    11 22 12 210 09 0 08 0 07 0 06c . ,c . ,c . ,c . ,   
 11 220 16 0 08. , . ,   

 

12 210 14 0 12. , . ,    11 22 12 210 05 0 06 0 04 0 06. , . , . , . ,       
 1 20 2 0 1I . ,I . , 

 

1 2 1 2 1 21 1 4 2 4 1 1 2j j, , , , , ( j , )                 
 

Take 0 6.  , By simple computation, we have 
2

1 1 1 1 1 1

1

0 7 0j j j j j

j

a a [ c ( ) ] . ,


          
2

2 2 2 2 2 2

1

1 24 0j j j j j

j

a a [ c ( ) ] . ,


          
 

2 2

1 1 1 1 1 1 1 1 1 1 1

1 1

1 2 0j j j j j j j j

j j

( c ) I a [ c ( ) ) . ,
 


             


 

 
2 2

2 2 2 2 2 2 2 2 2 2 2

1 1

2 06 0j j j j j j j j

j j

( c ) I a [ c ( ) ) . .
 


             


 

 
Now, we can see that conditions  (A1)-(A8) hold. By Theorem 3.1, system (9) has a 

 
1

4
-anti-periodic solution which is exponentially stable. 

5. Conclusion 

In this paper, we have studied the existence, exponential stability of the anti-periodic solution for 

fuzzy Cohen-Grossberg neural networks with time delays.  Some sufficient conditions set up here are 

easily verified and these conditions are correlated with parameters of the system (1). The obtained 

criteria can be applied to design globally exponential stable of anti-periodic fuzzy Cohen-Grossberg 
neural networks.  
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