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Abstract. This paper studies the DC-DC buck converter response controlled by two second-order 
single-input control techniques: equivalent-control quantization sliding mode voltage control 
(QSMVC) and general sliding mode voltage control (SMVC). Simulations illustrate the behaviors of 
the equivalent-control based SMVC system under uniform and logarithmic quantized state feedback. 
The output voltage and inductor current of both models were studied and compared under normal 
conditions, load step change, load linear variation, and input voltage step change. It shows that the 
equivalent-control QSMVC system performs better than the general SMVC system in terms of 
robustness and stability. The equivalent-control QSMVC system prevents the sliding mode controller 
from operating at a frequency that is too high for the power switch to respond. Also, by setting the 
value of quantization parameters the output voltage value can be greater than 5.999V with less than 
0.17% deviation from 6V. 

1. Introduction 

Switching power supply control applications have been extensively studied, many controllers 
have been developed to control switching-mode power supplies (SMPSs) and to solve problems 
regarding non-linear components in the converter structure, line and load variations, and 
electro-magnetic interferences (EMI) [1], some paper are [2] [3] [4] [5]. See [1] for discussion the 
advantages and drawbacks of each control method, and under which conditions different control 
methods are suitable. Sliding mode (SM) controllers are well known for their robustness and stability 
for solving these problems. One of the most salient features of the sliding mode scheme in a variable 
structure system (VSS) is the ability to achieve a response independent of the parameter of the system; 
the only constraint is the canonical form description of the system. 

The sliding mode is a nonlinear control that conforms to the nonlinear structure of the switch mode 
power supply, and it provides a means of implementing a control action that utilizes the inherently 
variable structure characteristics of the DC-DC converter. Due to the advantages of SMC, has been 
widely studied and implemented, with a key focus being quantization feedback. Uniform and 
logarithmic quantizers, which can make the system states converge into a band by setting the 
quantization parameters to control the width of the band, are most commonly used. See [6] [7] for 
further detail on quantization problems in SMC. Quantization behaviors in Equivalent-control based 
SMC systems has been mentioned in [7] and it is understood that has not been used on buck converter. 
In this paper, to prove its good performance, we made its behaviors compare with the behaviors of 
general sliding mode control which is described in [8]. 

This paper is organized as follows. Section 2 introduces some preliminaries including the buck 
converter, equivalent-control of sliding mode voltage control, and quantizer function. Section 3 
details the equivalent-control based on sliding mode voltage control systems with quantizer 
(equivalent-control QSMVC). Section 4 presents the experimental results of a buck converter 
controlled by the equivalent-control QSMVC or by general SMVC. Finally, Section 5 summarizes 
our findings. 
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2. Preliminaries 

This section introduces some basic concepts, including two commonly used quantizers, and the 
theoretical aspects of the modulated ramp Pulse-Width-Modulation (PWM) [9] generator applied in 
the equivalent-control sliding mode voltage control of buck converter systems. We assume that 
everyone knows how the buck converter works and does not elaborate. 
2.1 Equivalent-control Based on a Sliding Mode Voltage Control  

The sliding mode is a variable structure system (VSS), the instantaneous states of the system 
determine that a change occurs and force the system trajectory to maintain a suitable selected surface 
called a sliding surface. However, the important task is to find the state variables and select the 
appropriate sliding surface. Let R2)+R2/(R1=β be partial output voltage ratio, 

ref
V and 

o
V be the 

reference and sensed output voltage, and {1,0}u  be the switching state of power switch
W

S as 'ON' 

or 'OFF'. The output voltage error
1

x , the rate of voltage error change 
2

x , and the integral of voltage 

error 
3

x  are state variables expressed as 
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From Eq. (1), the system state space model can be derived as: 
 x Ax Bu D      (2) 
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The sliding surface is described as 
 1 1 2 2 3 3

S c x c x c x Jx       (3) 

where
1 2 3

J c c c    , and 
1
c , 

2
c , and 

3
c represent the control parameters as sliding 

coefficients. To set the coefficients of the sliding surface, the system can consider its required 
bandwidth 

BW
f [8]. 

To ensure that a system follows its sliding surface, a control law must be obeyed, and to prevent 
the sliding mode controller from operating at a too high frequency, a hysteresis band is introduced in 
[10]. Suppose that S    . In S    , 

W
S remains in its previous state. The value of 

0   is determined by the choice of sliding mode. Then, under ideal sliding mode conditions, the 
control law is defined as 
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Using the Lyapunov's Method [11] to ensure that SMC is realizable in this system, an existence 
condition [12] 0V SS    must be obeyed.  

When the system enters the sliding phase, by incorporating the hysteresis band, it is not difficult to 
find that at the transition point of S   , there exists a corresponding pointS    . Further, by 
combining Eqs.(2) and (3) and the time derivative of (3), the condition can be transformed into 

( ) 0SS S JAx JBu JD    . Therefore, we can get 

Advances in Engineering Research, volume 114

341



 

 
sgn( ) 0, ;

sgn( ) 0, .

JAx JB JD S S

JAx JD S S

 
 

     


    
   (5) 

Where 0   is the same that in 
s

u   introduced in the next paper. Obviously, if this condition is 

met, the above conditions 0SS   must be satisfied.  We obtain the inequality 

     0  JAx JB JD sgn S JAx JD sgn S         .   (6) 

Here, the inequality can be translated into 

  2 2
3 1 1 2 0 2

0 ( )   in
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or rearranged as 

 1 2 3 1 2 2 1 2 4 2

2 3 2 3

1 1
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c a c a
           (8) 

The equivalent-control based on SMVC is 

 *

eq s
u u u     (9) 

Where the solution of the controller consists of two parts, a continuous equivalent control part is 

eq
u  and a discontinuous control part is 

s
u , which are the outputs of an equivalent-control SMC 

system [13]. Many studies use 
eq
u  as the output of the SMC system, which called the general SMC 

system [8]. The equivalent control 
eq
u is the amount of control applied by the sliding mode controller 

when the system enters the sliding mode dynamics 0S  . The equivalent control 
eq
u  is obtained by 

taking Eq. (2) into 0S  , where JB  is non-singular, as follows: 
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The discontinuous control part 
s

u  is used to overcome the uncertainty of the system and to give 

the system new features as follows: 
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Where 0  is a controller parameter, sgn( )x  is a signum function where sgn( )=1x  for 

0x  , sgn( )=-1x  for 0x  , and sgn( )=0x  for 0x  . Since *0 1u  . In the PWM control 

system[8], the duty cycle d  is expressed as ˆ/
c ramp

d V V , where 0 1d  , and 
c
V  and 

ramp
V  

represent the control signal of the PWM and the peak magnitude ramp signal, respectively. Drawing 

on ideas in [8] [14], we obtain *

c
V u  and ˆ 1

ramp
V  . 

2.2 Quantizer 
Here, we will introduce two commonly used quantizers: uniform quantizer and logarithmic 

quantizer. 

2.2.1 Uniform Quantizer 

A uniform quantizer with quantizing level q  can be defined as 

 ( ) ( )
uni

x
Q x q round

q
     (12) 
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where ( )
uni

Q x  is the quantization operator, and ( )round   is a function that rounds x  value to the 

nearest integer value. For example, (1.2) 1round  and (1.6) 2round  . This can be written in 
more detail as 
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The quantization error of a uniform quantizer can be expressed as 
 ( ) ( ) ( )

uni
e x Q x x     (14) 

, where
2

q
e  , and the quantization level q  is a constant. The maximum rounding error is half 

ofq . The smaller q  value is, the closer the quantitative result to the true value will be. The area of 
1 1

( , )
2 2

x q q   is called the dead-zone area, and it causes the system to converge and chatter 

around the area of ( ) 0
uni

Q x  . 

2.2.2 Logarithmic Quantizer 

The quantization level of a logarithmic quantizer is the variable described by 

{ : 0, 1, 2, } {0}il i                                                   (15) 

where 0   is a scaling parameter and (0,1)   is quantization density. A small   implies 

coarse quantization, whereas a large  implies dense quantization. i r , where r N   is a 
constant representing the number of system quantization steps. 

The logarithmic quantization operator 
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, and quantization error is expressed as 

log
( ) ( )e x Q x x                                                         (17) 

where 
1

1








, and   represents the maximum relative error of the logarithmic quantized 

variable, e x . 

The logarithmic quantizer has a dead-zone area 
1 1

{ , }
1 1

r rx    
 

 
 

. This dead-zone 

area is controlled by r , and it can be minimized by choosing a suitable integer r . For the stability 
problem of the control process, the logarithmic quantizer is more efficient than the uniform quantizer. 
The logarithmic quantizer can faster converge, and has smaller dead-zone area than the uniform 
quantizer. 
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3. The SMVC System with Quantized State Feedback 

This section introduces the problems relating to the SMVC system with quantized state feedback. 
It is assumed that the input variables to the sliding mode controller are simply the quantized value of 
the system states. The quantizer is present between the system states output and the sliding mode 
controller input as shown in Figure 1. In Figure 1, the system states pass through the quantizer and are 
quantized as ( )x̂ Q x , where the quantized value of x  is represented by a symbol x̂  and called 

quantization states. The symbols û  and Ŝ  represent the output of the controller and the switching 
function, respectively. Therefore, the mathematical model of the sliding mode control system Eqs.(2), 
(3), (9) can be rewritten as: 
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1
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3
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êq
u , 

ŝ
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, where 
1
e  and 

2
e  are quantization errors of 

1
x  and 

2
x , respectively. 

 
Figure 1. The SMC system with quantized state feedback. 

As be defined in [7], the SMC with quantized state feedback is called a quantized sliding mode 
control (QSMC), and the sliding mode in QSMC is called a quantized sliding mode (QSM). In this 
paper the QSMC system is characterized by Eqs.(18), (19), and (20), where QSM is the quantized 
switching function Eq.(19). With the role of the quantizer, the system can become a hybrid system 
[15]. 

To make the system achieve a steady state after sliding on the switching surface, the condition, as 
derived from Eqs.(5) and (23) is 

 1 2 3 1 max 2 2 1 2 max
( ) ( )ac c e a c c e      ,   (24) 

where 
1 max
e  and 

2 max
e  are the maximum quantization errors of 

1
x  and 

2
x . The derivation steps are 

1 1 2 2 3 3
( ) 0SS S c x c x c x       . Substituting Eqs.(18), (23) to it, we can get  

 1 2 3 1 2 2 1 2
(( ) ( ) )S ac c e a c c e S    .    (25) 

Then, the inequality 
1 2 3 1 max 2 2 1 2 max

( ) ( )ac c e a c c e      can be obtained. 
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4. System Simulation and Analysis 

To compare the performance of equivalent-control QSMVC and general SMVC, simulations 
using a benchmark converter with the specifications given in Table 1 were carried out in 
MATLAB\SimulationTM. 

Table 1. Specification of buck converter. 
Description Parameter Nominal Value 

Input voltage Vin 12V 
Inductance L 180mH 
Capacitance C 100μF 

Load resistance RL 3Ω 
Switching frequency fS 200kHz 

Target output Vod 6V 
Reference voltage Vref 3V 

Partial voltage ratio β 0.5 
In the equivalent-control QSMVC system, let the system state 

2
x  pass through the uniform 

quantizer. As 
2

x  is the rate of voltage error change, its minimum value is relatively large compared 

with r  .  In contrast, if we choose logarithmic quantizer, the state will never enter the dead-zone 

domain. Let the system states 
1

x , 
3

x  pass through the logarithmic quantizer.  As the value of 
1

x  and 

3
x  are little, the dead-zone area of logarithmic quantizer can be controlled as small as possible by 

selecting suitable r  value. Other values of the simulation parameters used in simulation are 10q  , 
0.8  , 0.1  ,  and 25r  . 

4.1 Normal Condition 
First, we consider the steady state under normal conditions, that is, the input voltage and load 

resistance are not changed. The simulation results of the output voltage and inductor current 
controlled by the equivalent-control QSMVC system and general SMVC system are shown in Figure 
2 and Figure 3. The output voltage and inductor current fluctuation intervals are (5.991V, 5.992V) 
and (1.95A, 2.05A) , respectively. For the equivalent-control QSMVC system, by setting the value of 
quantization parametersr ,  ,  , q , the output voltage and inductor current are more stable and 
approach a straight line. In fact, the output voltage value is bigger than 5.999V with less than 0.17% 
deviation from 6V, and the inductor current interval is (2A, 2.01A) located in the middle of the 
inductor current waveform controlled by the general SMVC system.  
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Figure 2. The steady-state output voltage under normal conditions. 
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Figure 3. The steady-state inductor current under normal conditions. 

The next step is to verify that the equivalent-control QSMVC system has robustness and stability. 
4.2 Load Step Change 

We start our simulation with load RL=3Ω, then apply a step change to 24Ω at time=0.005s. The 
simulation results in Figure 4, and 5 show the output voltage and inductor current change process 
controlled by the two control systems from the steady state before the load change to the steady state 
after the load change. As illustrated in Figure 4, when the load resistance step changes, the output 
voltage of both control systems has an overshoot ripple change with amplitude about 0.4V. From the 
enlarged part of Figure 4 that the equivalent-control QSMVC system reaches steady state earlier than 
the general SMVC system. We also find that the steady-state output voltage in equivalent-control 
QSMVC system before the load step change is the same as the steady-state output voltage after the 
load step change, while general SMVC system shows a slight offset. For this phenomenon, we do not 
give figures. Comparing the output voltage of the two systems, it can be concluded that QSMVC has 
better robustness and stability regarding load step change. Under the two control systems, when the 
resistance step changes, the inductor current drops rapidly and reaches steady state quickly, and the 
overall trend of the inductor current is the same. The change process of the inductor current shows is 
shown in Figure 5. 
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Figure 4. The voltage output change process in the case of step change in load at time=0.005s. 
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(a) The inductor current before step change. 
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(b) The inductor current after step change. 

Figure 5. The inductor current change process in the case of step change in load at time=0.005s.  
Figure 5(a) and Figure 5(b) are the enlarged views of the load step before and after the step change, 

respectively. In Figure 5(b), it can be clearly seen that the current drop recovers more quickly in the 
equivalent-control QSMVC when the step load change is applied. Further, the inductor current value 
is close to a straight line, and is located in the middle of inductor current waveform controlled by the 
general SMVC system.  
4.3 Load Linear Change 

Figure 6 and 7 show output voltage and inductor current with load resistances linear change 
between 3Ω and 24Ω with the cycle time is 36.6 10 s . To be able to more clearly observe the 
changes in these two pictures, we cut a part of the pictures and zoom in Figure 8 and 9.  
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Figure 6. The output voltage change process in the case of load periodic linear change. 
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Figure 7. The inductor current change process in the case of load periodic linear change. 

As illustrated in Figure 8, when the load undergoes a linear change, the output voltage of the 
equivalent-control QSMVC system is maintained in a straight line, and the output voltage of the 
general SMVC system has significant fluctuations. Figure 9 shows the variation of inductor current 
with load linear change. From the enlarged section, we see that regardless of the load value, the 
inductor current curve of the equivalent-control QSMVC system is located in the middle of the 
inductor current waveform controlled by the general SMVC system. 36.6 10time s  and 

313.2 10time s   correspond to the resistance values of 3V and 24V, respectively. The inductor 
current change trend of the two controllers is the same. With the resistance changes, the current first 
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slowly down and then slowly increase, the graphics to 39.9 10time s   as the center of the form of 
symmetry between 36.6 10 s  and 313.2 10 s . The change of equivalent-control QSMVC is the 
curve change, while the general SMVC is the fluctuation change. 
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Figure 8. The output voltage change process in the case of load periodic linear change. 
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Figure 9. The inductor current change process in the case of load periodic linear change. 

4.4 Input Voltage Step Change 
In subsection 4.2 and 4.3, the changes of output voltage and inductor current in the two systems 

were described under load step change and linear change conditions. In this subsection, we discuss 
the changes in output voltage and inductor current under input voltage step changes. Our simulation 
starts with input voltage Vin=12V, then applies a step change to 24V at time=0.005s. As illustrated in 
Figure 10, when the input voltage step changes, there is no change in the output voltage controlled by 
the equivalent-control QSMVC system. However, the output voltage controlled by the general 
SMVC system rapidly declines, and there is a clear gap between the stability values before and after 
the input voltage change. In Figure 11, before and after the input voltage step change, the inductor 
current controlled by the equivalent-control QSMVC is almost unchanged, while the amplitude of the 
inductor waveform is significantly larger in the general SMVC system. Comparing the two control 
systems, it can be concluded that QSMVC has better robustness and stability to input voltage step 
change. 
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Figure 10. The output voltage change process in the case of step change in input voltage at 

time=0.005s. 
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Figure 11. The inductor current change process in the case of step change in input voltage at 

time=0.005s. 

5. Conclusion 

In this paper, a novel sliding mode QSM is introduced, and a uniform and logarithmic quantizer is 
used between the system state output and the control input. We focused on the effect of the buck 
converter controlled by an equivalent-control QSMVC by testing under normal conditions, load step 
change, load linear change, and input voltage step change, and compared the results with the buck 
converter controlled by a general SMVC. 
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