

Performance-sensitive components exploration in Spark Streaming

Ying Hou a, Yi Liang b and Chao Su c
School of Beijing University of Technology, Beijing 100124, China;

ahouying109@ emails.bjut.edu.cn, b yliang@bjut.edu.cn, c13810469621@163.com

Keywords: big data, spark streaming, performance-sensitive components.

Abstract. Streaming data processing has become a hot topic in the big data research. To ensure the
timeliness of data processing, it is important to explore the performance-sensitive components in the
streaming data processing platform, which can contribute to the more efficient performance
optimization. In this paper, we describe the data processing model in the Spark Streaming, the
process can be divided into multiple phases. We propose a simple yet useful method to explore
performance-sensitive component components among these phases. Experimental results show that
the proposed method is suitable for a wide range of workloads. At last, we demonstrate a detail
example of the application of this method on the typical Spark Streaming workload Word count and
prove its practicability.

1. Introduction

Spark Streaming is the cutting-edge system for the batch-based streaming data processing. It
meets the wide demands in real-time sensor data processing [1,2] and social network stream data
analysis [3,4]. Spark Streaming is an extension of the core Spark API that enables scalable,
high-throughput, fault-tolerant stream processing of live data streams[5].

Spark streaming is a complex system consisting of multiple data processing phases, including data
reception, storage, processing, and so on. For each phase, there is a component that dominates the
data processing performance, which is called the performance-sensitive component. The
performance-sensitive components can be various with different hardware/software infrastructures. It
is obvious that exploring the performance-sensitive component can guide the performance
optimization of Spark Streaming system more efficiently. However, to our best knowledge, it is still a
blank area in the Spark Streaming research.

In this paper, we firstly describe the abstract multiple-phase model of data processing of Spark
Streaming, and then propose a method that identify performance-sensitive component components
with the sojourn time of each phase. We show through extensive experiments that the proposed
method is suitable for a wide range of workloads.

In the rest of the paper, Section 2 introduces the principle of Spark Streaming, and present the data
processing model. Section 3 describes the exploration method of performance-sensitive components
in detail. Section 4 gives the experimental results and Section 5 finalizes the paper with a brief
conclusion.

2. Behavior Analysis Of Spark Streaming

2.1 Principle of Spark Streaming
In Spark streaming system, the streaming data is divided into mini-batches and stored in Spark’s

memory as RDDs (Resilient Distributed Datasets), and then periodically processed by Spark engine
with the MapReduce-styled batch computation [6].

There are two important configuration parameters in Spark Streaming, one is block interval, the
other is batch interval. For each block interval, the incoming data items in the DStream are generated
as a data block and stored in Spark. For each batch interval, the new-generated data blocks are
abstracted as an RDD and submitted to be processd as a Spark job.

International Conference on Advances in Materials, Machinery, Electrical Engineering (AMMEE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 114

390

2.2 Phase Division of Spark Streaming
We divide the data processing procedure into two parts,the data acquisition and the data

processing,. Each part consists multiple phases as in Figure 1.

Fig. 1 Phase division of Spark Streaming

The processing phases are described as follows:
(1) data reception. Reveiver component ingests stream data from data sources (such as Kafka),

and store it in memory buffer.
(2) data block building. Timer of Block Generator component periodically pack the data in buffer

up a data block after a block interval by user-defined, and puts the data block into Block For Push
queue. The block interval is 200ms acquiescently.

(3) Data block storage. Block Pushing Thread thread continually passes the blocks in the Block
For Push queue to the Block Manager component, which store data block int memory or disk.

(4) Metadata storage. Push Array Buffer method passes the metadata information (such as
blockId) of the data block stored by the Block Manager to the Receiver Tracker component, and the
Receiver Tracker component puts blockId into the corresponding stream queue and store blockId in
the Receiver BlockInfo queue.

(5) Job generation. Job Generator component periodically extract all blocks in Receiver
BlockInfo queue to generate the corresponding RDD, and generate job according to the RDD
dependency. The job is submitted to Job Queue.

(6) Job scheduling operation. Job Scheduler schedules job form Job Queue, and submits to
Spark’s Scheduler. The job is split into a large number of tasks and is processed on cluster’s Executor
component.

3. Performance-sensitive Components Exploration

3.1 The Significances of Exploring Performance-Sensitive Components
According to the mentioned in section 2, data processing in Spark Streaming is composed of

multiple phases. And a phase corresponds to a core component. The core components of these phases
are Receiver, Block Generator, Block Manager, Receiver Tracker, Job Generator and Executor
respectively.

In the process of data processing, the data sequentially goes through multiple components, and the
sojourn time of each component is different. Selecting performance-sensitive components is the
premise of optimizing the performance of system, which can maximally improve system performance
efficiency.
3.2 Method of Exploring Performance-Sensitive Component

The core idea of exploring performance-sensitive component is to collect sojourn time of each
phase, which is used to compute the percentage of sojourn time and standard deviation of each phase.
The percentage of sojourn time can evaluate the criticality of the component, and standard deviation
can reflect the randomness of sojourn time of component.

The following variables and definitions are used for the method.
C={ci | 1≤ i ≤ 6}: the set of core components that described in part A.
D={dj | 1≤ i ≤ n}: the set of test data item.
λ={λm | 1≤ m ≤ p}: the set of data arrival rate.
P: the percentage of sojourn time.

Advances in Engineering Research, volume 114

391

σ: standard deviation.
CK: the set of performance-sensitive component components.
CR: the set of random components, namely the sojourn time of component is random.
CK: the set of constant components, namely the sojourn time of component approximately is a fixed

value.
Tendi: the time that data dj leave component ci.
Tstarti: the time that data dj come component ci.
Tm: total sojourn time of data dj under data arrival rate λm, namely the sum of the average sojourn

time of each component.
Pa: the threshold value of the percentage of sojourn time.
σa: the threshold value of standard deviation.
Baseed on the above variables and definations, the method is described as follows.
Step 1: For data arrival rate λm ∈ λ, and data item dj ∈D , the sojourn time of component ci.is Tijm,

it is calculated according to

ijm endi startiT T T  (1)
Step 2: The average sojourn time of component ci. under data arrival rate λm is Tim, it is calculated

according to

1

n

ijm
j

im

T

T
n


 (2)

Step 3: Tm is total sojourn time of data item dj under data arrival rate λm, it is calculated according to
6

1
m im

i

T T


  (3)

Step 4: For λm ∈ λ, the percentage of average sojourn time of component ci is Pim, and the standard
deviation of component ci is σim, they are calculated according to

im
im

m

T
P

T
 (4)

2

1
()

n

ijm imj
im

T T

n
 



 (5)

Step 5: The percentage of average sojourn time of component ci under different data arrival rate is Pi,
and the average standard deviation of component ci under different data arrival rate is σi, they are
calculated according to

1

p

im
m

i

P
P

p

 (6)

1

p

im
m

i p


 

 (7)

Step 6: For each ci ∈C, if Pi ≥ Pa, then CK = CK ∪ { ci }.
Step 7: For each ci ∈CK, if σi ≥ σa, then CR = CR ∪ { ci }, else CC = CC ∪ { ci }.

4. Experiment And Analysis

4.1 Experimental Setup
We conduct the experiments in a cluster of 7 machines, each equipped with Intel Xeon E5-2660

processors and 16GB physical memory. Each processor contains six processing cores. The operating
system for the cluster is centos 6.5 and all machines connected through 1 Gigabit Ethernet. In our
cluster, computation cluster contains 5 nodes, one functioning as master and others as slaves. One is
data generator node that generate data and push it to Apache Kafka, the last one node for deploying

Advances in Engineering Research, volume 114

392

Apache Kafka and Zookeeper, Kafka send data to computation cluster, Zookeeper provides services
for Kafka and Apache Spark.

We use wordcount, a typical streaming workload, under different data arrival rates to test. We use
Hibench benchmark as dataset generator. Table 1 shows the group of data arrival rate.
4.2 Experiment Results

We run wordcount application under different data arrival rates on Spark Streaming.

0

200

400

600

800

1000

c1 c2 c3 c4 c5 c6

av
er

ag
e

so
jo

ur
n

ti
m

e(
m

s)

number of component

data1 data2 data3

Fig. 1 The sojourn time of component under different data arrival rate

0

20

40

60

80

100

c1 c2 c3 c4 c5 c6

st
an

da
rd

 d
ev

ia
tio

n

number of component

date1 date2 date3

Fig. 2 The standard deviation of component under different data arrival rate

Fig. 1 presents the sojourn time of each component under different data arrival rates. In the process
of data processing, the sojourn time of component c1, c3, c6 is longer than component c2, c4, , c6. As the
changes of the data arrival rate from data1 to data3, the sojourn time of the same component is
decreasing.

In this paper, we use the percentage of sojourn time and standard deviation to explore
performance-sensitive components. Fig. 2 show the standard deviation of each component. Table 2
presents the percentage of sojourn time of all components for each data arrival rate. The percentage of
sojourn time of c6 is the biggest.

Table 1. The Percentage of Sojourn Time under Different Data Arrival Rate
Number of component Data1 Data2 Data3

 c1 15.92% 13.96% 9.51%
c2 0.18% 0.21% 0.21%
c3 12.00% 14.65% 12.82%
c4 1.46% 1.68% 2.02%
c5 5.12% 7.52% 9.17%
c6 65.32% 61.98% 66.27%

Advances in Engineering Research, volume 114

393

Table 2. The Percentage of Sojourn Time under Different Data Arrival Rate
Number of component the percentage of average sojourn time average standard deviation

c1 13.13% 18.57
c2 0.20% 0.84
c3 13.16% 28.42
c4 1.72 % 4.89
c5 7.27% 5.24
c6 64.52% 48.38

The experimental results of the percentage of average sojourn time and average standard deviation
of component are shown in Table 3. We configured our parameter to use Pa =10% and σa = 10. The set
of performance-sensitive component components CK.= { c1, c3, c6}={Receiver, Block Manager,
Executor}, the set of random components CR.= { c1, c3, c6}={Receiver, Block Manager, Executor}, the
set of random components CC.= ∅ .	

5. Conclusion

In this paper, we have proposed a simple yet useful method to explore the performance-sensitive
components for Spark Streaming. We also show the practicability of this method with the typical Spark
Streaming workload.

References

[1]. Yang K L, Ling W, Ryu K H.A System Architecture for Monitoring Sensor Data Stream[C]//
International Conference on Computer and Information Technology, 2007: 1026-1031.

[2]. Martinez-Julia P, Torroglosa Garcia E, Ortiz Murillo J, et al.Evaluating Video Streaming in
Network Architectures for the Internet of Things[C]//International Conference on Innovative
Mobile & Internet Services in Ubiquitous Computing, 2013:411-415.

[3]. Ediger D, Riedy J, Bader D A, et al.Tracking Structure of Streaming Social Networks[C]//IEEE
International Symposium on Parallel and Distributed Processing Workshops and Phd Forum,
2011:1691-1699.

[4]. Borthakur D, Gray J, Sarma J S, et al.Apache hadoop goes realtime at Facebook[C]//ACM
SIGMOD International Conference on Management of Data, 2011:1071-1080.

[5]. Spark Streaming. http://spark.apache.org/docs/latest/streaming-programming-guide.html.

[6]. Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing[C]// Usenix Conference on Networked Systems Design and
Implementation. USENIX Association, 2012:2-2

Advances in Engineering Research, volume 114

394

