

A Fine-Grained Task Monitoring Mechanism in Spark Platform

Cheng Chen1, a, Fei Liu1, b, Guangrui Li2, c, Xiang Chen1, d and Ying Hou1, e
1Faculty of Information Technology, Beijing University of Technology, Beijing100124, China;

2NO.10 Building, Suzhou Software Park, No.78, Keling Road, China
accheng@emails.bjut.edu.cn, bliufei@emails.bjut.edu.cn, cliguangrui@cmss.chinamobile.com,

dchenxiang@emails.bjut.edu.cn, eHouYing@emails.bjut.edu.cn

Keywords: Spark, In-memory Computing, Fine-grained, Task monitoring.

Abstract. The existing coarse-grained monitoring mechanism in Spark has much difficulty in
analyzing and locating the bottleneck during the execution of tasks. Aiming to solve this problem, we
divide the execution process of Spark tasks into several subphases, and propose a fine-grained
subphases-based monitoring mechanism. The fine-grained monitoring mechanism can help users to
understand the detail execution status of Spark tasks and be beneficial to analyze and locate the
performance bottleneck in Spark.

1. Introduction

We are at the beginning of a Big Data era, in which both industry and academia are undergoing a
profound transformation with the use of large-scale datasets. Currently, many systems for large data
processing are presented. In-memory computing platform is a cutting-edge in the data processing
system. Spark, the representative of the distributed memory computing platform, has been widely
recognized by industry and academia [1, 2].

Apache Spark is a large data parallel computing framework based on memory computing. Spark
application has a complicated computing logic, leading a job-stage-task execution model. A stage is a
set of parallel tasks all computing the same function that need to run as part of a Spark job, task is a
fundamental unit of resource consumption and execution. A Spark task is usually composed of
multiple subphases and each phase has the different computing logic. At present, the existing
coarse-grained monitoring mechanism in Spark takes each job as the monitor unit, and hence, lack of
the detailed information of each stage and corresponding task, which leads to much difficulty in
analyzing and locating the performance bottleneck during the execution of task. For Spark users, task
monitoring information is the fundamental information of locating exception and system bottlenecks
[3]. Therefore, a fine-grained monitoring mechanism can contribute much to the performance
analysis and optimization of Spark.

2. Principle of Spark

2.1 Spark Overview.
Spark was developed by the University of California at Berkeley AMPLab, which is based on

memory computing large data parallel computing framework. It introduces Resilient Distributed
Datasets (RDD) as an abstract expression of distributed data sets [4]. Besides, Spark provides a
wealth of advanced data manipulation primitives for building complex data processing logic and
utilizes DAG (Directed Acyclic Graph) to describe the dependencies between operations. Spark
divides DAG into multiple stages that can be executed in parallel depending on dependencies and
hides the details of Spark's distributed parallel execution.
2.2 Task Phases Division.

Spark stages are created by breaking DAG at shuffle boundaries, which introduce a barrier where
the behind stage must wait for the previous stage to finish to fetch outputs. There are two types of
stages: Shuffle Map Stage, which writes map output files for a shuffle and Result Stage, which read
those files after a barrier. Each of them contains a set of parallel tasks, computing the same function,

International Conference on Advances in Materials, Machinery, Electrical Engineering (AMMEE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 114

395

called Shufle MapTasks and Result Tasks respectively. The two types of tasks are similar to the Map
tasks and Reduce tasks in Hadoop platform respectively [5]. Depending on the behavior
characteristics of the task execution, task can be divided into several small phases. In the following,
we take a two-stage job which similar to Map/Reduce job in Hadoop as an example to illustrate the
detailed task phase’s division.

As shown in Fig.1, the tasks of the two-stage job can be refined into six small phases. When the
Map task are executed, each data record is processed in a pipelined manner, the process can be
described as follows: First, reading the data to be processed by the task, and then processing the data,
finally storing the processing results. Therefore, the Map task can be split into three subphases: Map
Read, Mapper and Shuffle Write. When the Map tasks are fully executed, the Reduce task begins to
be scheduled. Reduce task pull the data from all nodes that have executed the Map tasks, and then
perform operations such as aggregation and sorting, finally performing the Reducer operations
according to the application logic. In summary, the Reduce task can be refined into as following
subphases: Shuffle Fetch, Reduce Aggregate and Reducer.

Fig.1 Phases of data processing in Spark

3. Design and Implementation

In this paper, the design and implementation of the fine-grained monitoring mechanism is based
on the Spark’s Standalone mode. In this mode, the responsibility of the Driver is to manage the status
of the Executor and	 monitor the execution of the task. Executor is the basic processing unit that
handles the task. On the basis of the original Spark (version 1.4) components, we modify and extend
corresponding components. We use the method of inserting the pile to obtain the detailed index of
tasks, to achieve the purpose of fine-grained monitoring.
3.1 Hierarchical Design.

Our fine-grained monitoring mechanism is designed with a hierarchical structure, as Fig.2 shows.
The layers in the architecture are monitoring layer, communication layer and user layer respectively.
Monitoring layer is mainly responsible for collecting task metrics in real time and summarizing the
metrics. Communication layer is designed for the transmission of metrics between nodes and the
communication between user layer and monitoring layer. User layer is responsible for receiving the
user request, providing the user with a visual interface.

Fig.2 Hierarchy of fine-grained task monitoring system

Advances in Engineering Research, volume 114

396

3.2 System Implementation.
1) Monitoring Layer

Monitoring Layer is at the heart of the fine-grained monitoring mechanism, which consists of three
components: registration service component, metric collector, and aggregation service component.
The registration service component runs on the Spark node as a daemon thread, responsible for
registering monitoring event, monitoring source and monitoring sink. The Metric Collector runs on
each Executor node, and the primary responsibility is to collect the metrics information for the
registration event during the execution of the Spark application. The aggregation service runs on the
Driver node, and its primary role is to aggregate the task information collected by the metric collector
component.

The monitoring information collected by Monitoring Layer mainly includes static information and
dynamic information. Static information, such as task identification (task id), etc. can be obtained
from the original Task Metrics in Spark directly, so this paper focuses on the obtaining of dynamic
information. The dynamic metrics include the type of task, and different types of tasks have different
metrics. The following will introduce the task metrics that need to be collected according to the task
phases that is subdivided in Section 1.2. Metrics can be divided into two categories: the original
metrics and calculation metrics, the original metrics can be obtained by a single registration indicator,
the calculating metrics need to be integrated with multiple original metrics and obtained by
calculation.

Table 1 Task Metrics
Sub-Stage Metric Type Description
MapRead _bytesRead original Number of bytes read for the map

 _recordsRead original Number of records read for the map
 _readTime original Total time of fetching data
 _progress calculating The percentage of data that has read

Mapper _computingTime calculating Calculation time of mapper
ShuffleWrite _shuffleBytesWriten original Number of bytes written for the shuffle

 _shuffleWriteTime original Total time of writing data

ShuffleFetch _remoteBlocksFetched original
Number of blocks fetched in this shuffle

from remote

 _localBlocksFetched original
Number of blocks fetched in this shuffle

from local

 _remoteBytesFetched original
Number of bytes fetched in this shuffle

from remote

 _localBytesFetched original
Number of bytes fetched in this shuffle

from local
 _totalBytesFetched original Fetched time in this shuffle from local
 _remoteDuration original Fetched time in this shuffle from remote

 _progress calculating
The percentage of data that has been

readed
ReduceAggregate _aggregateTime original Time of aggregation

 _spillBytes original
Number of on-disk bytes spilled by this

task
Reducer _duration Calculation time of reducer

2) Communication Layer
Communication layer is responsible for passing metrics between nodes, and the communication

between user layer and monitoring layer. Communication layer is implemented based on the existing
heartbeat mechanism and message queue. In order to avoid affects to the original Spark, we did not
change the original way of communication, only changed the communication tuple information. As
shown in Fig 3, during the execution of tasks in Executor, the metrics need to be collected will be
recorded in a data structure, and be packaged into a heartbeat, reported to the Driver. After receiving
the report information, the driver extracts the monitoring information and sends the information to the
message queue, and then waits for the summary service to be processed. After the summary service

Advances in Engineering Research, volume 114

397

receives the reported information, aggregating the metrics according to the task type.	 Finally, it is
provided to the user layer.

Fig.3 Schematic of Communication
3) User Layer

User layer to provide users with visual monitoring interface. In this System, User layer is
displayed in Web mode, which use the built-in Jetty as the Web Server and take the servlet as the
request controller. On the basis of the display in original Spark, we add the data metrics that displayed
in WebUI with the concept of task and provide users with a richer system metrics. This article uses
the Simple Skewed Group By Test provided in Spark as a test load to verify system functionality (The
experiment was carried out in a cluster with 6 nodes, 2.2GH Xeon CPUs, 16GB RAM), observe the
display of the metric information in the subphases on the Web monitoring page and intercept the
Reduce task execution information as a result of the show. As shown in Fig.4, the task progress
information, the local and remote shuffle data and other metrics are displayed normally. Through the
analysis of the collected metrics, users can clearly understand the cost and task execution bottlenecks
of each stage.

Fig.4 Tasks Info

4. Conclusion and Future Work

This paper proposed a fine-grained monitoring mechanism that divides the execution of task in
Spark into several subphases and monitor the sub-phases respectively. We implement the
fine-grained monitoring mechanism based on the original Spark monitoring system, and demonstrate
its features. This system makes it easier for users to understand the execution procedure of Spark job
and analyze the bottleneck factors that exist during the execution of the Spark job.

In the future work, we would like to add another feature in our system: analyzing system
bottleneck automatically, extending our system to latest version of Spark and extending more system
resource metrics.

References

[1]. Information on: spark.apache.org.
[2]. M. Zaharia, M. Chowdhury, S. S. Michael J. Franklin, and I. Stoica, Spark: Cluster Computing

with Working Sets. Hot Cloud, 2010, 6.

Advances in Engineering Research, volume 114

398

[3]. Ganesh Ananthanarayanan, Michael Chien-Chun Hung, XiaoqiRen. GRASS: Trimming
Stragglers in Approximation Analytics[C], NSDI, 2014, 289-302

[4]. Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing[C]// Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. USENIX Association, 2012:141-146.

[5]. Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. [C]//
Conference on Symposium on Opearting Systems Design & Implementation. 2004:107-1.

Advances in Engineering Research, volume 114

399

