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In this paper, a new extension of cumulative residual entropy is proposed. It contain the generalized cumulative
residual entropy introduced by Psarrakos and Navarro (2013) and is related with the k-record values. We also
consider a dynamic version of this new cumulative residual entropy using the residual lifetime. For these con-
cepts, we obtain some properties similar to generalized cumulative residual entropy in stochastic ordering and
aging classes properties.
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1. Introduction

Suppose X denotes the lifetime of a system or living organism with probability density function
(pdf) f . Shannon(1948) introduced a measure of uncertainty associated with X as

H(X) =−
∫ +∞

0
f (x) log f (x)dx. (1.1)

Consider the lifetime X of a system that has survived up to time t. In order to calculate the uncer-
tainty about the residual life of such a system, Shannon entropy (1.1) is not appropriate. Ebrahimi
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(1996) defined uncertainty of the residual lifetime of the random variable Xt = [X− t | X > t] as

H(X ; t) = H(Xt) =−
∫ +∞

t

f (x)
F(t)

log
f (x)
F(t)

dx, (1.2)

where F(t) = Pr(X > t) is the survival function of X . Recently, new measures of information are
proposed in literature: replacing the pdf by the survival function in Shannon entropy, Rao et al.
(2004) introduced a new measure of information that extends the Shannon entropy to continuous
random variables, and called it cumulative residual entropy (CRE). The CRE is based on survival
function F̄(x), and is defined as

E (X) =
∫ +∞

0
F̄(x)Λ(x)dx, (1.3)

where Λ(x) = − log F̄(x). Asadi and Zohrevand (2007) defined a dynamic version of the CRE
(DCRE) by E (X ; t) = E (Xt). Navarro et al. (2010) presented some stochastic ordering and aging
classes properties of DCRE, and also defined the CRE and DCRE of past entropy X[t] = (t−X |X ≤
t]. Some new connections of the CRE and the residual lifetime are given by Kapodistria and Psar-
rakos (2012) using the relevation transform. Psarrakos and Navarro (2013) generalized the concept
of CRE relating this concept with the mean time between record values and with the concept of rele-
vation transform, and also considered dynamic version of this new measure. Raqab and Asadi (2010)
obtained some mathematical properties of this generalized cumulative residual entropy (GCRE).
Sunoj and Linu (2012) proposed the cumulative version of Renyi’s entropy. Recently, Psarrakos
and Toomaj (2017) obtained some results on generalized cumulative residual entropy with applica-
tions in actuarial science .

Let {Xn,n≥ 1} be a sequence of independent and identically distributed random variables with
cumulative distribution function (cdf) F and pdf f . An observation X j will be called an upper record
value if its value exceeds all previous observations. Thus, X j is an upper record value if X j > Xi for
every i < j. For a fixed positive integer k, Dziubdziela and Kopocinski (1976) defined the sequence
{Un(k),n≥ 1} of k-th upper record times for the sequence {Xn,n≥ 1} as follows:

Un(k) = 1, Un+1(k) = min{ j >Un(k) : X j: j+k−1 > XUn(k):Un(k)+k−1},

where X j:m denotes the j-th order statistics in a sample of size m. Then Xn(k) = XUn(k) is called a
sequence of k-th upper record values of {Xn,n ≥ 1}. The pdf of Xn(k) is given by Dziubdziela and
Kopocinski (1976) as follows:

fn(k)(x) =
kn

(n−1)!
[F̄(x)]k−1[Λ(x)]n−1 f (x). (1.4)

The cdf of Equation (1.4) can be obtained as

Fn(k)(x) =
∫ x

0

kn

Γ(n)
[F̄(y)]k−1[Λ(y)]n−1 f (y)dy
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= [F̄(x)]k
∞

∑
i=n

[kΛ(x)]i

i!
= 1− [F̄(x)]k

n−1

∑
i=0

[kΛ(x)]i

i!
. (1.5)

The above equation is obtained using the relationship between the incomplete gamma function
and the sum of Poisson probabilities as follows:∫ z

0

λ n

Γ(n)
xn−1e−λxdx =

∞

∑
i=n

[λ z]i

i!
e−λ z. (1.6)

Hence, the survival function of Xn(k) is given by

F̄n(k)(x) = [F̄(x)]k
n−1

∑
i=0

[kΛ(x)]i

i!
= wn(F̄(x)), (1.7)

where wn(x) = xk
∑

n−1
i=0

[−k logx]i

i! is an increasing function. Now, let µn,k(x) =
∫ +∞

0 F̄n(k)(x)dx. Then,
from (1.7) we have

k(µn+1,k(x)−µn,k(k)) =
∫ +∞

0

kn+1

n!
[F̄(x)]k[Λ(x)]ndx.

Let X be a non-negative absolutely continuous random variable with cdf F . Then similarly to the
generalized cumulative residual entropy studied in Psarrakos and Navarro(2013), we can define an
extension of CRE of X as

En,k(X) =
∫ +∞

0

kn+1

n!
[F̄(x)]k[Λ(x)]ndx

=
∫ +∞

0

kn+1

n!
[F̄(x)]k−1[Λ(x)]n f (x)

F̄(x)
f (x)

dx

= EXn+1(k)

(
1

λ (X)

)
, f or n = 0,1,2, ..., k ≥ 1, (1.8)

where Xn+1(k) is a random variable with pdf (1.4) and λ (.) = f (.)
F̄(.)

is the hazard (failure) function
of F . This new CRE is an extension of generalized CRE introduced by Psarrakos and Navarro(2013)
and is obtained relating the concept of CRE with the mean time between k-record values. We call it
extended cumulative residual entropy (ECRE). In this paper, we also consider the dynamic version
of ECRE (DECRE) and obtain some properties of ECRE and DECRE.

This paper is organized as follows: In Section 2, we study some basic properties of ECRE. We
also propose the dynamic version of ECRE, and obtain some results related to this measure. In
Section 3, we state some relationships of ECRE with other concepts such as the mean lifetime of
Xn(k) and the mean residual lifetime of the random variable [Xn(k)− t | Xn(k) > t].

2. Some properties and characterization results

In this section, we discuss some properties of ECRE. We also present a dynamic version of this
concept with its characterization results. Here,≤st ,≤lr and≤hr denote the usual stochastic order, the
likelihood ratio order and the hazard rate order, respectively. Also, the abbreviation for increasing
(decreasing) failure rate, mean residual lifetime and decreasing (increasing) mean residual lifetime
are IFR (DFR), MRL and DMRL (IMRL), respectively.
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Proposition 2.1.
i. If k = 1, then the ECRE becomes to GCRE introduced by Psarrakos and Navarro(2013) i.e.
En,1(X) = En(X).
ii. If k = 1 and n = 1, then the ECRE becomes to CRE introduced by Rao et al. (2004), i.e. E1,1(X) =

E (X).
iii. Let X be a random variable of exponential distribution with mean λ , then we have En,k(X) =

En(X) = λ .

Proposition 2.2. If X is IFR (DFR), then

En,k(X)≥ (≤)En+1,k(X), for n = 1, . . . , k ≥ 1. (2.1)

Proof. Let fn(k) be the pdf of of k-record value Xn(k). Then, the ratio
fn+1(k)(t)
fn(k)(t)

= k
n Λ(t) is increasing

in t. Therefore, Xn(k) ≤lr Xn+1(k), and this implies that Xn(k) ≤st Xn+1(k), i.e.
F̄n(k) ≤ F̄n+1(k) (see Shaked and Shanthikumar 2007, Chapter 1). The proof is completed.

Theorem 2.1. If X ≤ST Y and X is DFR, then

En,k(X)≤ En,k(Y ), f or n = 1,2, ...., k ≥ 1. (2.2)

Proof. It is well known that X ≤HR Y implies X ≤ST Y (see Shaked and Shanthikumar 2007). Hence
from (1.7), we have

F̄n+1(k) = wn+1(k)(F̄(t))≤ wn+1(k)(Ḡ(t)) = Ḡn+1(k),

where Ḡn+1(k) is the survival function of Yn+1(k). That is, Xn+1(k) ≤ST Yn+1(k) holds. This is
equivalent (see Shaked and Shanthikumar 2007, p.4) to have

E(φ(Xn+1(k)))≤ E(φ(Yn+1(k)))

for all increasing functions φ such that these expectations exist. Thus, if we assume that X is DFR
and λ (x) is its hazard rate, then 1

λ (x) is increasing and from (1.8), we have that

En,k(X) = EXn+1(k)

(
1

λ (X)

)
≤ EYn+1(k)

(
1

λ (X)

)
.

On the other hand, X ≤HR Y implies that the respective hazard rate functions satisfy λ (x)≥ λ (y) .
Hence, we have

EYn+1(k)

(
1

λ (X)

)
≤ EYn+1(k)

(
1

λ (Y )

)
= En,k(Y ).

Therefore, using both expressions we obtain En,k(X)≤ En,k(Y ).

Proposition 2.3. If X is IFR (DFR), then

En,k(X)≤ (≥)En,k+1(X), for n = 1,2, . . . , k ≥ 1.

Proof. The proof is similar to Proposition 2.2.

Journal of Statistical Theory and Applications, Vol. 16, No. 2 (June 2017) 165–177
___________________________________________________________________________________________________________

168



The dynamic version of the ECRE, that is, the ECRE of the residual lifetime Xt = (X− t | X > t)
is given by

En,k(X ; t) =
∫ +∞

t

kn+1

n!
[
F̄(x)
F̄(t)

]k[− log(
F̄(x)
F̄(t)

)]ndx , n = 0,1,2, . . . , k ≥ 1. (2.3)

This function is called dynamic extended cumulative residual entropy (DECRE). In the next propo-
sition, we present some results of DECRE.

Proposition 2.4.
i. En,k(X ;0) = En,k(X).

ii. E0,1(X ; t) = E(Xt) = m(t) is the MRL function of X.
iii. Let X be a random variable of exponential distribution with mean λ , then we have

En,k(X ; t) = En−1,k (X ; t) = λ .
iv. If X is IFR (DFR), then En,k(X ; t)≥ (≤)En+1,k(X ; t), for all t and n = 1,2, . . . .
v. If X is IFR (DFR), then En,k(X ; t)≤ (≥)En,k+1(X ; t), for all t and k ≥ 1.
vi. By using the binomial expansion, we have

En,k(X ; t) =
∫ +∞

t

kn+1

n!
[
F̄(x)
F̄(t)

]k[− log(
F̄(x)
F̄(t)

)]ndx

=
∫ +∞

t

kn+1

n!
[
F̄(x)
F̄(t)

]k[Λ(x)−Λ(t)]ndx

=
kn+1

n![F̄(t)]k

∫ +∞

t
[F̄(x)]k

n

∑
i=0

(
n
i

)
(−1)n−i[Λ(x)]i[Λ(t)]n−idx

=
kn+1

n![F̄(t)]k
n

∑
i=0

(
n
i

)
(−1)n−i[Λ(t)]n−i

∫ +∞

t
[F̄(x)]k[Λ(x)]idx

=
kn+1

[F̄(t)]k
n

∑
i=0

(−1)n−i

i!(n− i)!
[Λ(t)]n−i

∫ +∞

t
[F̄(x)]k[Λ(x)]idx. (2.4)

vii.

∫ +∞

t
[F̄(x)]k[Λ(x)]ndx = n![F̄(t)]kEn,k(X ; t)

−
n−1

∑
i=0

(
n
i

)
(−1)n−i[Λ(t)]n−i

∫ +∞

t
[F̄(x)]k[Λ(x)]idx. (2.5)

viii.

E[En,k(X ;X)] =
∫ +∞

0
En,k(X ;x) f (x)dx.

In the following, we study some properties of aging classes and characterization results. To this
purpose we first give an expression for the derivative of En,k(X ; t).
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Theorem 2.2. Let X be a non-negative absolutely continuous random with cdf F, then

Én,k(X ; t) = kλ (t)[En,k(X ; t)−En−1,k(X ; t)]. (2.6)

Proof. The relation (2.4) can be written as

En,k(X ; t)[F̄(t)]k = kn+1
n

∑
i=0

(−1)n−i

i!(n− i)!
[Λ(t)]n−i

∫ +∞

t
[F̄(x)]k[Λ(x)]idx. (2.7)

By differentiating both sides with respect to t, we have

Én,k(X ; t)[F̄(t)]k− k f (t)[F̄(t)]k−1En,k(X ; t) = kn+1
λ (t)

n−1

∑
i=0

(−1)n−i

i!(n− i−1)!
[Λ(t)]n−i−1

∫ +∞

t
[F̄(x)]k[Λ(x)]idx

− kn+1[Λ(t)]n[F̄(t)]k
n

∑
i=0

(−1)n−i

i!(n− i)!
. (2.8)

Since

n

∑
i=0

(−1)n−i

i!(n− i)!
=

1
n!

n

∑
i=0

(−1)n−i
(

n
i

)
= 0,

we conclude that

Én,k(X ; t)[F̄(t)]k− k f (t)[F̄(t)]k−1En,k(X ; t) = kn+1
λ (t)

n−1

∑
i=0

(−1)n−i

i!(n− i−1)!
[Λ(t)]n−i−1

×
∫ +∞

t
[F̄(x)]k[Λ(x)]idx. (2.9)

Now by using (2.4), we have

Én,k(X ; t)[F̄(t)]k− k f (t)[F̄(t)]k−1En,k(X ; t) =−kλ (t)[F̄(t)]kEn−1,k(X ; t). (2.10)

This completes the theorem.

Proposition 2.5. For n,k = 1 , we have the following relation which is given by Navarro et al.(2010)
as

É1,1(X ; t) = λ (t)[E1,1(X ; t)−m(t)].

Theorem 2.3. If X is IFR (DFR), then En,k(X ; t) is decreasing(increasing) for n= 0,1, ... and k≥ 1.

Proof. The result is true for n = 0 and k = 1 since E0,1(X ; t) = m(t) is the MRL function of X and
it is well known that IFR (DFR) implies DMRL (IMRL). For n≥ 1 from Theorem 2.2, we have

Én,k(X ; t) = kλ (t)[En,k(X ; t)−En−1,k(X ; t)].

Moreover, from (2.1), we have that if X is IFR(DFR), then

En,k(X ; t)≤ (≥)En−1,k(X ; t).

Therefore, Én,k(X ; t)≤ (≥)0 for all t. Using this property we can define the following aging classes.
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Definition 2.1. We say that X has an increasing (decreasing) DECRE of order n, shortly written as
IDECREn(DDECREn) if En,k(X ; t) is increasing (decreasing) in t.

Remark 2.1. i. If X is IFR (DFR), then it is DDECREn(IDECREn) for n = 0,1,2, . . . and k ≥ 1.
ii. For k = 1, DDECRE0 (IDECRE0) is equivalent to DMRL (IMRL).

Using again Theorem 2.2 we can obtain the following characterization result which extends the
result obtained in Theorem 4.8 of Asadi and Zohrevand(2007).

Theorem 2.4. If for k≥ 1 En,k(X ; t) = ckEn−1,k(X ; t) holds for a fixed n∈ {1,2, . . .} and c > 0, then
X has a exponential (c = 1), a Pareto type II (c > 1) or a power distribution (c < 1).

Proof. This result was proved for n = k = 1 in Theorem 4.8 of Asadi and Zohrevand(2007). Now,
we assume that the result is true for n−1 and we are going to prove it for n. We are assuming that
for c > 0,

En,k(X ; t) = ckEn−1,k(X ; t)

holds. Then the derivative of En,k(X ; t) is given by

Én,k(X ; t) = ckÉn−1,k(X ; t).

Moreover, from (2.6), we have

Én,k(X ; t) = ckÉn−1,k(X ; t) = kλ (t)[En,k(X ; t)−En−1,k(X ; t)]

= kλ (t)(ck−1)En−1,k(X ; t).

Analogously, using (2.6) for n−1, we get

ckÉn−1,k(X ; t) = ck2
λ (t)[En−1,k(X ; t)−En−2,k(X ; t)].

Therefore,

En−1,k(X ; t) = ckEn−2,k(X ; t),

and hence, we get the stated result.
We have already mentioned that if X is exponential, then En,k(X ; t) = En−1,k(X ; t) = ...= m(t) =

µ . The preceding theorem proves that En,k(X ; t) = En−1,k(X ; t) for a fixed n and for all t ≥ 0 char-
acterizes the exponential model.

Proposition 2.6. i. Let X be a non-negative random variable of Pareto type II model with survival
function F̄(t) = [ β

t+β
]α (t ≥ 0,α,β > 0), then we have En,k(X ; t) = ckEn−1,k(X ; t) = cnkn+1mk(t),

where mk(t) =
t+β

αk−1 and mk(t)≤ E1,k(X ; t)≤ E2,k(X ; t)≤ ·· · ≤ En,k(X ; t). Hence, we obtian

En,k(X ; t) =
αnkn+1(t +β )

(α−1)n(αk−1)
.

ii. Let X be a non-negative random variable of power model with survival function F̄(t) = (β−t)α

β α

(0≤ t < β ,α,β > 0), then we have En,k(X ; t) = ckEn−1,k(X ; t) = cnkn+1m∗k(t), where m∗k(t) =
β−t

αk+1
and m∗k(t)≥ E1,k(X ; t)≥ E2,k(X ; t)≥ ·· · ≥ En,k(X ; t). Hence, we get

En,k(X ; t) =
αnkn+1(β − t)

(α +1)n(αk+1)
.
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3. Relationships with other functions

In this section, we state some relationships of En,k(X) with other functions. The proofs follow on
the same line of Psarrakos and Navarro (2013).

Theorem 3.1. Let X be a non-negative random variable with cdf F and the hazard rate λ (z),z > 0.
Then for any k ≥ 1 and n = 1,2, ..., we have

En,k(X) =
kn+1

n!

∫ +∞

0
λ (z)

{∫ +∞

z
[F̄(x)]k[Λ(x)]n−1dx

}
dz (3.1)

Proof. By (1.8) and the relation Λ(x) =
∫ x

0 λ (z)dz, we have

En,k(X) =
kn+1

n!

∫ +∞

0

∫ x

0
λ (z)[F̄(x)]k[Λ(x)]n−1dzdx.

With using Fubini’s theorem, we get

En,k(X) =
kn+1

n!

∫ +∞

0

∫ +∞

z
λ (z)[F̄(x)]k[Λ(x)]n−1dxdz,

and the results follows.

Proposition 3.1. If X is a continuous random variable with survival function F̄, then we have the
following result which is given in Psarrakos and Toomaj (2017) as

En,1(X) =
1
n!

E[X(Λ(X))n]− 1
(n−1)!

E[X(Λ(X))n−1].

Theorem 3.2. If X is a continuous random variable with cdf F, then for any n = 1,2, ..., we have

En,k(X) =
kn+1

n
E[En−1,k(X ;X)(F̄(X))k−1]

− kn+1

n!

n−2

∑
i=0

(
n−1

i

)
(−1)n−i−1

∫ +∞

0

∫ +∞

z
λ (z)[Λ(z)]n−i−1[F̄(x)]k[Λ(x)]idxdz.

Proof. Putting (2.5) in (3.1), we get

En,k(X) =
kn+1

n!

∫ +∞

0
λ (z)(n−1)![F̄(z)]kEn−1,k(X ;z)dz

− kn+1

n!

∫ +∞

0
λ (z)[

n−2

∑
i=0

(
n−1

i

)
(−1)n−i−1[Λ(z)]n−i−1

∫ +∞

z
[F̄(x)]k[Λ(x)]idx]dz,

or, equivalently

En,k(X) =
kn+1

n

∫ +∞

0
En−1,k(X ;z)[F̄(z)]k−1 f (z)dz

− kn+1

n!

n−2

∑
i=0

(
n−1

i

)
(−1)n−i−1

∫ +∞

0

∫ +∞

z
λ (z)[Λ(z)]n−i−1[F̄(x)]k[Λ(x)]idxdz.

The relation (3.1) completes the proof.
Bdair and Raqab(2012) defined the mean residual waiting time (MRWT) of the (n+1)th shock

time when the nth shock time did not fall in (0, t). Specifically,
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Wn,k(t) = E(Xn(k)− t | Xn(k) > t) =
∑

n−1
j=0
∫ +∞

t
k j

j! [F̄(x)]k[Λ(x)] jdx

∑
n−1
j=0

k j

j! [F̄(t)]k[Λ(t)] j
. (3.2)

A connection between En,k(X) and Wn,k(t) is obtained in the following theorem.

Theorem 3.3. Let X be a non-negative random variable with survival function F̄, then for any
n = 1,2, ..., we have

En,k(X) =
1
n

n−1

∑
j=0

[kE[Wn,k(X( j+1)k)]− jE j,k(X)].

Proof. From relation (3.1), we obtain

jE j,k(X) =
k j+1

( j−1)!

∫ +∞

0
λ (z)

{∫ +∞

z
[F̄(x)]k[Λ(x)] j−1dx

}
dz.

Summing with respect to j = 1,2, ...,n, we get

n

∑
j=1

jE j,k(X) =
∫ +∞

0
λ (z)

n

∑
j=1

∫ +∞

z

k j+1

( j−1)!
[F̄(x)]k[Λ(x)] j−1dxdz

=
∫ +∞

0
λ (z)

n−1

∑
j=0

∫ +∞

z

k j+2

j!
[F̄(x)]k[Λ(x)] jdxdz.

Then, using (3.2), we have

n

∑
j=1

jE j,k(X) =
∫ +∞

0
λ (z)k2[

n−1

∑
j=0

∫ +∞

z

k j

j!
[F̄(x)]k[Λ(x)] jdx]dz

=
∫ +∞

0
λ (z)k2Wn,k(z)[

n−1

∑
j=0

k j

j!
[F̄(z)]k[Λ(z)] j]dz

=
∫ +∞

0
kWn,k(z)[

n−1

∑
j=0

k j+1

j!
[F̄(z)]k−1[Λ(z)] j f (z)]dz

=
∫ +∞

0
kWn,k(z)

n−1

∑
j=0

f( j+1)k(z)dz =
n−1

∑
j=0

∫ +∞

0
kWn,k(z) f( j+1)k(z)dz

= k
n−1

∑
j=0

E[Wn,k(X( j+1)k)].

Now, we can write

n

∑
j=1

jE j,k(X) =
n−1

∑
j=1

jE j,k(X)+nEn,k(X)

=
n−1

∑
j=0

jE j,k(X)+nEn,k(X)

Journal of Statistical Theory and Applications, Vol. 16, No. 2 (June 2017) 165–177
___________________________________________________________________________________________________________

173



= k
n−1

∑
j=0

E[Wn,k(X( j+1)k)].

So, we have

En,k(X) =
1
n

n−1

∑
j=0

[kE(Wn,k(X( j+1)k))− jE j,k(X)].

From (3.2), we can obtain the following result as

Wn,k(t) =
n−1

∑
j=0

M j,k(t)p j,k(t), (3.3)

where

M j,k(t) =
∫ +∞

t
k j[

F̄(x)
F̄(t)

]k[
Λ(x)
Λ(t)

] jdx, (3.4)

and

p j,k(t) =
[Λ(t)] j

j!

∑
n−1
i=0

ki[Λ(t)]i
i!

. (3.5)

To get an useful connection between Wn,k(t) and En,k(X ; t), we need the following lemma.

Lemma 3.1. Let X be a non-negative random variable with survival function F̄, then we have

M j,k(t) =
j

∑
i=0

j!
( j− i)!

k j−i−1

[Λ(t)]i
Ei,k(X ; t). (3.6)

Proof. From (3.4), we have

M j,k(t) =
∫ +∞

t
k j[

F̄(x)
F̄(t)

]k[
Λ(x)
Λ(t)

] jdx

=
∫ +∞

t
k j[

F̄(x)
F̄(t)

]k[
− log( F̄(x)

F̄(t) )

Λ(t)
+1] jdx

=
∫ +∞

t
k j

j

∑
i=0

(
j
i

)
[
− log( F̄(x)

F̄(t) )

Λ(t)
]i[

F̄(x)
F̄(t)

]kdx

=
j

∑
i=0

(
j
i

)
k

j−i−1 1
[Λ(t)]i

∫ +∞

t
ki+1[

− log( F̄(x)
F̄(t) )

Λ(t)
]i[

F̄(x)
F̄(t)

]kdx

=
j

∑
i=0

j!
( j− i)!

k j−i−1

[Λ(t)]i

∫ +∞

t

ki+1

i!
[
− log( F̄(x)

F̄(t) )

Λ(t)
]i[

F̄(x)
F̄(t)

]kdx

=
j

∑
i=0

j!
( j− i)!

k j−i−1

[Λ(t)]i
Ei,k(X ; t).

Now we can obtain the connection between Wn,k(t) and En,k(X ; t).
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Theorem 3.4. Let X be a non-negative random variable with cdf F, then we have

Wn,k(t) =
n−1

∑
i=0

Ei,k(X ; t)γi,k(t),

where

γi,k(t) =
∑

n−i
j=0

k j−1[Λ(t)] j

j!

∑
n−1
l=0

kl [Λ(t)]l
l!

, i = 0,1, ...,n.

Proof. By (3.3) and (3.4), we have

Wn,k(t) =
n−1

∑
j=0

j

∑
i=0

j!
( j− i)!

k j−i−1

[Λ(t)]i
Ei,k(X ; t)p j,k(t)

=
n−1

∑
i=0

n−1

∑
j=i

j!
( j− i)!

k j−i−1

[Λ(t)]i
Ei,k(X ; t)p j,k(t)

=
n−1

∑
i=0

Ei,k(X ; t)
[Λ(t)]i

n−1

∑
j=i

j!
( j− i)!

k j−i−1 [Λ(t)] j

j!

∑
n−1
l=0

kl [Λ(t)]l
l!

=
n−1

∑
i=0

Ei,k(X ; t)
∑

n−1
j=i

k j−i−1[Λ(t)] j−i

( j−i)!

∑
n−1
l=0

kl [Λ(t)]l
l!

=
n−1

∑
i=0

Ei,k(X ; t)
∑

n−i
j=0

k j−1[Λ(t)] j

j!

∑
n−1
l=0

kl [Λ(t)]l
l!

.

Theorem 3.5. Let X be a non-negative random variable with survival function F̄, then for any
n = 1,2, ..., we have

En,k(X) =
1
n

{
n−1

∑
i=0

ki+2

i!
E
(
[F̄(X)]k−1[Λ(X)]imn(k)(X)

)
−

n−2

∑
i=0

ki+2

i!
E
(
[F̄(X)]k−1[Λ(X)]imn−1(k)(X)

)}
,

where

mn(k)(t) =
1

F̄n(k)(t)

∫ +∞

t
F̄n(k)(x)dx, n = 1,2,3, ...

is the mean residual lifetime of Xn(k).

Proof. By (1.7), we see that

F̄n(k)(t)− F̄n−1(k)(t) =
[kΛ(t)]n−1

(n−1)!
[F̄(t)]k.

Substituting the last equation in (3.1), we have

En,k(X) =
k2

n

∫ +∞

0
λ (z)

{∫ +∞

z

[F̄(x)]k[kΛ(x)]n−1

(n−1)!
dx
}

dz
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=
k2

n

∫ +∞

0
λ (z)

{∫ +∞

z
[F̄n(k)(x)− F̄n−1(k)(x)]dx

}
dz

=
k2

n

∫ +∞

0
f (z)

{
F̄n(k)(z)

F̄(z)
mn(k)(z)−

F̄n−1(k)(z)
F̄(z)

mn−1(k)(z)
}

dz

=
k2

n

∫ +∞

0
f (z)[F̄(z)]k−1

{
n−1

∑
i=0

[kΛ(z)]i

i!
mn(k)(z)−

n−2

∑
i=0

[kΛ(z)]i

i!
mn−1(k)(z)

}
dz

=
1
n

n−1

∑
i=0

1
i!

∫ +∞

0
ki+2 f (z)[F̄(z)]k−1[Λ(z)]imn(k)(z)dz

− 1
n

n−2

∑
i=0

1
i!

∫ +∞

0
ki+2 f (z)[F̄(z)]k−1[Λ(z)]imn−1(k)(z)dz, (3.7)

and the result follows.

Remark 3.1. If n = k = 1, then we have

E1,1(X) = E(m(X)). (3.8)

Note that some results of m(X) are given by Asadi and Zohrevand (2007) and Novarro et al.(2010).

Proposition 3.2. Let X be a non-negative random variable with cdf F, then for any n = 1,2, ..., we
have

En,k(X) =
k
n

{
n−1

∑
i=0

E
(
mn(k)(Xi+1)

)
−

n−2

∑
i=0

E
(
mn−1(k)(Xi+1)

)}
, (3.9)

where Xi+1 is a random variable with pdf fi+1(k) .

A generalization of the CRE by using the CRE of X1:n = min(X1, . . . ,Xn) is defined by
Baratpour (2010) as follows:

E (X1:n) =−n
∫ +∞

0
[F̄(x)]n log F̄(x)dx = n

∫ +∞

0
[F̄(x)]nΛ(x)dx.

Proposition 3.3. Let X be a random variable of Pareto distribution with pdf f (x) = αβ α

xα+1 , x ≥ β .
Then, it holds that

i. E (X) = αβ

(α−1)2 , and E (X1:n) =
nαβ

(nα−1)2 . Let ∆1 = E (X)− E (X1:n), then Baratpour (2010)

noted that for α > 1, ∆1 ≥ 0 i.e. the uncertainty of X is bigger than that of X1:n. Also for n > 1
α

, ∆1

is an increasing function of n.
ii. En,k(X) = kanb

(ak−1)n+1 , a > 1
k , for n = 1,2, . . . and k≥ 1. Note that E1,1(X) = E (X). Also, we obtain

En,k(X) = a
ak−1En−1,k(X), and En,k(X)≥ En−1,k(X)≥ ...≥ E1,k(X). These results are expected since

Pareto type I is a DFR distribution.

4. Conclusions

The ECRE proposed here contain the generalized cumulative residual entropy introduced by Psar-
rakos and Navarro (2013) and is related with the k-record values and with the relevation transforms.
Also, a dynamic version of ECRE is considered. Some properties similar to generalized cumulative
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residual entropy in stochastic ordering and aging classes properties are obtained in this literature.
These concepts can be applied in measuring the uncertainty contained in the associated residual
lifetime.
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